Author: A.M. Bloch
Publisher: Springer Science & Business Media
ISBN: 0387216448
Category : Mathematics
Languages : en
Pages : 498
Book Description
This book explores connections between control theory and geometric mechanics. The author links control theory with a geometric view of classical mechanics in both its Lagrangian and Hamiltonian formulations, and in particular with the theory of mechanical systems subject to motion constraints. The synthesis is appropriate as there is a rich connection between mechanics and nonlinear control theory. The book provides a unified treatment of nonlinear control theory and constrained mechanical systems that incorporates material not available in other recent texts. The book benefits graduate students and researchers in the area who want to enhance their understanding and enhance their techniques.
Nonholonomic Mechanics and Control
Author: A.M. Bloch
Publisher: Springer Science & Business Media
ISBN: 0387216448
Category : Mathematics
Languages : en
Pages : 498
Book Description
This book explores connections between control theory and geometric mechanics. The author links control theory with a geometric view of classical mechanics in both its Lagrangian and Hamiltonian formulations, and in particular with the theory of mechanical systems subject to motion constraints. The synthesis is appropriate as there is a rich connection between mechanics and nonlinear control theory. The book provides a unified treatment of nonlinear control theory and constrained mechanical systems that incorporates material not available in other recent texts. The book benefits graduate students and researchers in the area who want to enhance their understanding and enhance their techniques.
Publisher: Springer Science & Business Media
ISBN: 0387216448
Category : Mathematics
Languages : en
Pages : 498
Book Description
This book explores connections between control theory and geometric mechanics. The author links control theory with a geometric view of classical mechanics in both its Lagrangian and Hamiltonian formulations, and in particular with the theory of mechanical systems subject to motion constraints. The synthesis is appropriate as there is a rich connection between mechanics and nonlinear control theory. The book provides a unified treatment of nonlinear control theory and constrained mechanical systems that incorporates material not available in other recent texts. The book benefits graduate students and researchers in the area who want to enhance their understanding and enhance their techniques.
Geometric Control and Non-holonomic Mechanics
Author: Velimir Jurdjevic
Publisher: American Mathematical Soc.
ISBN: 9780821807958
Category : Mathematics
Languages : en
Pages : 256
Book Description
Control theory, a synthesis of geometric theory of differential equations enriched with variational principles and the associated symplectic geometry, emerges as a new mathematical subject of interest to engineers, mathematicians, and physicists. This collection of articles focuses on several distinctive research directions having origins in mechanics and differential geometry, but driven by modern control theory. The first of these directions deals with the singularities of small balls for problems of sub-Riemannian geomtery and provides a generic classification of singularities for two-dimensional distributions of contact type in a three-dimensional ambient space. The second direction deals with invariant optimal problems on Lie groups exemplified through the problem of Dublins extended to symmetric spaces, the elastic problem of Kirchhoff and its relation to the heavy top. The results described in the book are explicit and demonstrate convincingly the power of geometric formalism. The remaining directions deal with the geometric nature of feedback analysed through the language of fiber bundles, and the connections of geometric control to non-holonomic problems in mechanics, as exemplified through the motions of a sphere on surfaces of revolution. This book provides quick access to new research directions in geometric control theory. It also demonstrates the effectiveness of new insights and methods that control theory brings to mechanics and geometry.
Publisher: American Mathematical Soc.
ISBN: 9780821807958
Category : Mathematics
Languages : en
Pages : 256
Book Description
Control theory, a synthesis of geometric theory of differential equations enriched with variational principles and the associated symplectic geometry, emerges as a new mathematical subject of interest to engineers, mathematicians, and physicists. This collection of articles focuses on several distinctive research directions having origins in mechanics and differential geometry, but driven by modern control theory. The first of these directions deals with the singularities of small balls for problems of sub-Riemannian geomtery and provides a generic classification of singularities for two-dimensional distributions of contact type in a three-dimensional ambient space. The second direction deals with invariant optimal problems on Lie groups exemplified through the problem of Dublins extended to symmetric spaces, the elastic problem of Kirchhoff and its relation to the heavy top. The results described in the book are explicit and demonstrate convincingly the power of geometric formalism. The remaining directions deal with the geometric nature of feedback analysed through the language of fiber bundles, and the connections of geometric control to non-holonomic problems in mechanics, as exemplified through the motions of a sphere on surfaces of revolution. This book provides quick access to new research directions in geometric control theory. It also demonstrates the effectiveness of new insights and methods that control theory brings to mechanics and geometry.
Geometric, Control and Numerical Aspects of Nonholonomic Systems
Author: Jorge Cortés Monforte
Publisher: Springer
ISBN: 3540457305
Category : Mathematics
Languages : en
Pages : 235
Book Description
Nonholonomic systems are a widespread topic in several scientific and commercial domains, including robotics, locomotion and space exploration. This work sheds new light on this interdisciplinary character through the investigation of a variety of aspects coming from several disciplines. The main aim is to illustrate the idea that a better understanding of the geometric structures of mechanical systems unveils new and unknown aspects to them, and helps both analysis and design to solve standing problems and identify new challenges. In this way, separate areas of research such as Classical Mechanics, Differential Geometry, Numerical Analysis or Control Theory are brought together in this study of nonholonomic systems.
Publisher: Springer
ISBN: 3540457305
Category : Mathematics
Languages : en
Pages : 235
Book Description
Nonholonomic systems are a widespread topic in several scientific and commercial domains, including robotics, locomotion and space exploration. This work sheds new light on this interdisciplinary character through the investigation of a variety of aspects coming from several disciplines. The main aim is to illustrate the idea that a better understanding of the geometric structures of mechanical systems unveils new and unknown aspects to them, and helps both analysis and design to solve standing problems and identify new challenges. In this way, separate areas of research such as Classical Mechanics, Differential Geometry, Numerical Analysis or Control Theory are brought together in this study of nonholonomic systems.
Kinematics and Dynamics of Multi-Body Systems
Author: J. Angeles
Publisher: Springer
ISBN: 3709143624
Category : Technology & Engineering
Languages : en
Pages : 344
Book Description
Three main disciplines in the area of multibody systems are covered: kinematics, dynamics, and control, as pertaining to systems that can be modelled as coupling or rigid bodies. The treatment is intended to give a state of the art of the topics discussed.
Publisher: Springer
ISBN: 3709143624
Category : Technology & Engineering
Languages : en
Pages : 344
Book Description
Three main disciplines in the area of multibody systems are covered: kinematics, dynamics, and control, as pertaining to systems that can be modelled as coupling or rigid bodies. The treatment is intended to give a state of the art of the topics discussed.
Nonholonomic Mechanics and Control
Author: A.M. Bloch
Publisher: Springer Science & Business Media
ISBN: 0387955356
Category : Mathematics
Languages : en
Pages : 501
Book Description
This book explores connections between control theory and geometric mechanics. The author links control theory with a geometric view of classical mechanics in both its Lagrangian and Hamiltonian formulations, and in particular with the theory of mechanical systems subject to motion constraints. The synthesis is appropriate as there is a rich connection between mechanics and nonlinear control theory. The book provides a unified treatment of nonlinear control theory and constrained mechanical systems that incorporates material not available in other recent texts. The book benefits graduate students and researchers in the area who want to enhance their understanding and enhance their techniques.
Publisher: Springer Science & Business Media
ISBN: 0387955356
Category : Mathematics
Languages : en
Pages : 501
Book Description
This book explores connections between control theory and geometric mechanics. The author links control theory with a geometric view of classical mechanics in both its Lagrangian and Hamiltonian formulations, and in particular with the theory of mechanical systems subject to motion constraints. The synthesis is appropriate as there is a rich connection between mechanics and nonlinear control theory. The book provides a unified treatment of nonlinear control theory and constrained mechanical systems that incorporates material not available in other recent texts. The book benefits graduate students and researchers in the area who want to enhance their understanding and enhance their techniques.
Sub-Riemannian Geometry
Author: Andre Bellaiche
Publisher: Birkhäuser
ISBN: 3034892101
Category : Mathematics
Languages : en
Pages : 404
Book Description
Sub-Riemannian geometry (also known as Carnot geometry in France, and non-holonomic Riemannian geometry in Russia) has been a full research domain for fifteen years, with motivations and ramifications in several parts of pure and applied mathematics, namely: control theory classical mechanics Riemannian geometry (of which sub-Riemannian geometry constitutes a natural generalization, and where sub-Riemannian metrics may appear as limit cases) diffusion on manifolds analysis of hypoelliptic operators Cauchy-Riemann (or CR) geometry. Although links between these domains had been foreseen by many authors in the past, it is only in recent years that sub- Riemannian geometry has been recognized as a possible common framework for all these topics. This book provides an introduction to sub-Riemannian geometry and presents the state of the art and open problems in the field. It consists of five coherent and original articles by the leading specialists: Andr Bellache: The tangent space in sub-Riemannian geometry Mikhael Gromov: Carnot-Carathodory spaces seen from within Richard Montgomery: Survey of singular geodesics Hctor J. Sussmann: A cornucopia of four-dimensional abnormal sub-Riemannian minimizers Jean-Michel Coron: Stabilization of controllable systems.
Publisher: Birkhäuser
ISBN: 3034892101
Category : Mathematics
Languages : en
Pages : 404
Book Description
Sub-Riemannian geometry (also known as Carnot geometry in France, and non-holonomic Riemannian geometry in Russia) has been a full research domain for fifteen years, with motivations and ramifications in several parts of pure and applied mathematics, namely: control theory classical mechanics Riemannian geometry (of which sub-Riemannian geometry constitutes a natural generalization, and where sub-Riemannian metrics may appear as limit cases) diffusion on manifolds analysis of hypoelliptic operators Cauchy-Riemann (or CR) geometry. Although links between these domains had been foreseen by many authors in the past, it is only in recent years that sub- Riemannian geometry has been recognized as a possible common framework for all these topics. This book provides an introduction to sub-Riemannian geometry and presents the state of the art and open problems in the field. It consists of five coherent and original articles by the leading specialists: Andr Bellache: The tangent space in sub-Riemannian geometry Mikhael Gromov: Carnot-Carathodory spaces seen from within Richard Montgomery: Survey of singular geodesics Hctor J. Sussmann: A cornucopia of four-dimensional abnormal sub-Riemannian minimizers Jean-Michel Coron: Stabilization of controllable systems.
Modern Robotics
Author: Kevin M. Lynch
Publisher: Cambridge University Press
ISBN: 1107156300
Category : Computers
Languages : en
Pages : 545
Book Description
A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.
Publisher: Cambridge University Press
ISBN: 1107156300
Category : Computers
Languages : en
Pages : 545
Book Description
A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.
Dynamics of Nonholonomic Systems
Author: Juru Isaakovich Ne_mark
Publisher: American Mathematical Soc.
ISBN: 082183617X
Category : Mathematics
Languages : en
Pages : 530
Book Description
The goal of this book is to give a comprehensive and systematic exposition of the mechanics of nonholonomic systems, including the kinematics and dynamics of nonholonomic systems with classical nonholonomic constraints, the theory of stability of nonholonomic systems, technical problems of the directional stability of rolling systems, and the general theory of electrical machines. The book contains a large number of examples and illustrations.
Publisher: American Mathematical Soc.
ISBN: 082183617X
Category : Mathematics
Languages : en
Pages : 530
Book Description
The goal of this book is to give a comprehensive and systematic exposition of the mechanics of nonholonomic systems, including the kinematics and dynamics of nonholonomic systems with classical nonholonomic constraints, the theory of stability of nonholonomic systems, technical problems of the directional stability of rolling systems, and the general theory of electrical machines. The book contains a large number of examples and illustrations.
Geometric Control of Mechanical Systems
Author: Francesco Bullo
Publisher: Springer
ISBN: 1489972765
Category : Science
Languages : en
Pages : 741
Book Description
The area of analysis and control of mechanical systems using differential geometry is flourishing. This book collects many results over the last decade and provides a comprehensive introduction to the area.
Publisher: Springer
ISBN: 1489972765
Category : Science
Languages : en
Pages : 741
Book Description
The area of analysis and control of mechanical systems using differential geometry is flourishing. This book collects many results over the last decade and provides a comprehensive introduction to the area.
Optimal Trajectory Tracking of Nonlinear Dynamical Systems
Author: Jakob Löber
Publisher: Springer
ISBN: 3319465740
Category : Science
Languages : en
Pages : 255
Book Description
By establishing an alternative foundation of control theory, this thesis represents a significant advance in the theory of control systems, of interest to a broad range of scientists and engineers. While common control strategies for dynamical systems center on the system state as the object to be controlled, the approach developed here focuses on the state trajectory. The concept of precisely realizable trajectories identifies those trajectories that can be accurately achieved by applying appropriate control signals. The resulting simple expressions for the control signal lend themselves to immediate application in science and technology. The approach permits the generalization of many well-known results from the control theory of linear systems, e.g. the Kalman rank condition to nonlinear systems. The relationship between controllability, optimal control and trajectory tracking are clarified. Furthermore, the existence of linear structures underlying nonlinear optimal control is revealed, enabling the derivation of exact analytical solutions to an entire class of nonlinear optimal trajectory tracking problems. The clear and self-contained presentation focuses on a general and mathematically rigorous analysis of controlled dynamical systems. The concepts developed are visualized with the help of particular dynamical systems motivated by physics and chemistry.
Publisher: Springer
ISBN: 3319465740
Category : Science
Languages : en
Pages : 255
Book Description
By establishing an alternative foundation of control theory, this thesis represents a significant advance in the theory of control systems, of interest to a broad range of scientists and engineers. While common control strategies for dynamical systems center on the system state as the object to be controlled, the approach developed here focuses on the state trajectory. The concept of precisely realizable trajectories identifies those trajectories that can be accurately achieved by applying appropriate control signals. The resulting simple expressions for the control signal lend themselves to immediate application in science and technology. The approach permits the generalization of many well-known results from the control theory of linear systems, e.g. the Kalman rank condition to nonlinear systems. The relationship between controllability, optimal control and trajectory tracking are clarified. Furthermore, the existence of linear structures underlying nonlinear optimal control is revealed, enabling the derivation of exact analytical solutions to an entire class of nonlinear optimal trajectory tracking problems. The clear and self-contained presentation focuses on a general and mathematically rigorous analysis of controlled dynamical systems. The concepts developed are visualized with the help of particular dynamical systems motivated by physics and chemistry.