Author: Frits Agterberg
Publisher: Springer
ISBN: 3319068741
Category : Science
Languages : en
Pages : 569
Book Description
This book provides a wealth of geomathematical case history studies performed by the author during his career at the Ministry of Natural Resources Canada, Geological Survey of Canada (NRCan-GSC). Several of the techniques newly developed by the author and colleagues that are described in this book have become widely adopted, not only for further research by geomathematical colleagues, but by government organizations and industry worldwide. These include Weights-of-Evidence modelling, mineral resource estimation technology, trend surface analysis, automatic stratigraphic correlation and nonlinear geochemical exploration methods. The author has developed maximum likelihood methodology and spline-fitting techniques for the construction of the international numerical geologic timescale. He has introduced the application of new theory of fractals and multi fractals in the geostatistical evaluation of regional mineral resources and ore reserves and to study the spatial distribution of metals in rocks. The book also contains sections deemed important by the author but that have not been widely adopted because they require further research. These include the geometry of preferred orientations of contours and edge effects on maps, time series analysis of Quaternary retreating ice sheet related sedimentary data, estimation of first and last appearances of fossil taxa from frequency distributions of their observed first and last occurrences, tectonic reactivation along pre-existing schistosity planes in fold belts, use of the grouped jackknife method for bias reduction in geometrical extrapolations and new applications of the theory of permanent, volume-independent frequency distributions.
Geomathematics: Theoretical Foundations, Applications and Future Developments
Author: Frits Agterberg
Publisher: Springer
ISBN: 3319068741
Category : Science
Languages : en
Pages : 569
Book Description
This book provides a wealth of geomathematical case history studies performed by the author during his career at the Ministry of Natural Resources Canada, Geological Survey of Canada (NRCan-GSC). Several of the techniques newly developed by the author and colleagues that are described in this book have become widely adopted, not only for further research by geomathematical colleagues, but by government organizations and industry worldwide. These include Weights-of-Evidence modelling, mineral resource estimation technology, trend surface analysis, automatic stratigraphic correlation and nonlinear geochemical exploration methods. The author has developed maximum likelihood methodology and spline-fitting techniques for the construction of the international numerical geologic timescale. He has introduced the application of new theory of fractals and multi fractals in the geostatistical evaluation of regional mineral resources and ore reserves and to study the spatial distribution of metals in rocks. The book also contains sections deemed important by the author but that have not been widely adopted because they require further research. These include the geometry of preferred orientations of contours and edge effects on maps, time series analysis of Quaternary retreating ice sheet related sedimentary data, estimation of first and last appearances of fossil taxa from frequency distributions of their observed first and last occurrences, tectonic reactivation along pre-existing schistosity planes in fold belts, use of the grouped jackknife method for bias reduction in geometrical extrapolations and new applications of the theory of permanent, volume-independent frequency distributions.
Publisher: Springer
ISBN: 3319068741
Category : Science
Languages : en
Pages : 569
Book Description
This book provides a wealth of geomathematical case history studies performed by the author during his career at the Ministry of Natural Resources Canada, Geological Survey of Canada (NRCan-GSC). Several of the techniques newly developed by the author and colleagues that are described in this book have become widely adopted, not only for further research by geomathematical colleagues, but by government organizations and industry worldwide. These include Weights-of-Evidence modelling, mineral resource estimation technology, trend surface analysis, automatic stratigraphic correlation and nonlinear geochemical exploration methods. The author has developed maximum likelihood methodology and spline-fitting techniques for the construction of the international numerical geologic timescale. He has introduced the application of new theory of fractals and multi fractals in the geostatistical evaluation of regional mineral resources and ore reserves and to study the spatial distribution of metals in rocks. The book also contains sections deemed important by the author but that have not been widely adopted because they require further research. These include the geometry of preferred orientations of contours and edge effects on maps, time series analysis of Quaternary retreating ice sheet related sedimentary data, estimation of first and last appearances of fossil taxa from frequency distributions of their observed first and last occurrences, tectonic reactivation along pre-existing schistosity planes in fold belts, use of the grouped jackknife method for bias reduction in geometrical extrapolations and new applications of the theory of permanent, volume-independent frequency distributions.
Encyclopedia of Mathematical Geosciences
Author: B. S. Daya Sagar
Publisher: Springer Nature
ISBN: 3030850404
Category : Science
Languages : en
Pages : 1744
Book Description
The Encyclopedia of Mathematical Geosciences is a complete and authoritative reference work. It provides concise explanation on each term that is related to Mathematical Geosciences. Over 300 international scientists, each expert in their specialties, have written around 350 separate articles on different topics of mathematical geosciences including contributions on Artificial Intelligence, Big Data, Compositional Data Analysis, Geomathematics, Geostatistics, Geographical Information Science, Mathematical Morphology, Mathematical Petrology, Multifractals, Multiple Point Statistics, Spatial Data Science, Spatial Statistics, and Stochastic Process Modeling. Each topic incorporates cross-referencing to related articles, and also has its own reference list to lead the reader to essential articles within the published literature. The entries are arranged alphabetically, for easy access, and the subject and author indices are comprehensive and extensive.
Publisher: Springer Nature
ISBN: 3030850404
Category : Science
Languages : en
Pages : 1744
Book Description
The Encyclopedia of Mathematical Geosciences is a complete and authoritative reference work. It provides concise explanation on each term that is related to Mathematical Geosciences. Over 300 international scientists, each expert in their specialties, have written around 350 separate articles on different topics of mathematical geosciences including contributions on Artificial Intelligence, Big Data, Compositional Data Analysis, Geomathematics, Geostatistics, Geographical Information Science, Mathematical Morphology, Mathematical Petrology, Multifractals, Multiple Point Statistics, Spatial Data Science, Spatial Statistics, and Stochastic Process Modeling. Each topic incorporates cross-referencing to related articles, and also has its own reference list to lead the reader to essential articles within the published literature. The entries are arranged alphabetically, for easy access, and the subject and author indices are comprehensive and extensive.
Dictionary of Mathematical Geosciences
Author: Richard J. Howarth
Publisher: Springer
ISBN: 3319573152
Category : Science
Languages : en
Pages : 892
Book Description
This dictionary includes a number of mathematical, statistical and computing terms and their definitions to assist geoscientists and provide guidance on the methods and terminology encountered in the literature. Each technical term used in the explanations can be found in the dictionary which also includes explanations of basics, such as trigonometric functions and logarithms. There are also citations from the relevant literature to show the term’s first use in mathematics, statistics, etc. and its subsequent usage in geosciences.
Publisher: Springer
ISBN: 3319573152
Category : Science
Languages : en
Pages : 892
Book Description
This dictionary includes a number of mathematical, statistical and computing terms and their definitions to assist geoscientists and provide guidance on the methods and terminology encountered in the literature. Each technical term used in the explanations can be found in the dictionary which also includes explanations of basics, such as trigonometric functions and logarithms. There are also citations from the relevant literature to show the term’s first use in mathematics, statistics, etc. and its subsequent usage in geosciences.
Quantitative Structural Geology
Author: David D. Pollard
Publisher: Cambridge University Press
ISBN: 1107035066
Category : Science
Languages : en
Pages : 453
Book Description
A pioneering single-semester undergraduate textbook that balances descriptive and quantitative analysis of geological structures.
Publisher: Cambridge University Press
ISBN: 1107035066
Category : Science
Languages : en
Pages : 453
Book Description
A pioneering single-semester undergraduate textbook that balances descriptive and quantitative analysis of geological structures.
Structural Geology
Author: David D. Pollard
Publisher: Cambridge University Press
ISBN: 1108661459
Category : Science
Languages : en
Pages : 454
Book Description
Tackling structural geology problems today requires a quantitative understanding of the underlying physical principles, and the ability to apply mathematical models to deformation processes within the Earth. Accessible yet rigorous, this unique textbook demonstrates how to approach structural geology quantitatively using calculus and mechanics, and prepares students to interface with professional geophysicists and engineers who appreciate and utilize the same tools and computational methods to solve multidisciplinary problems. Clearly explained methods are used throughout the book to quantify field data, set up mathematical models for the formation of structures, and compare model results to field observations. An extensive online package of coordinated laboratory exercises enables students to consolidate their learning and put it into practice by analyzing structural data and building insightful models. Designed for single-semester undergraduate courses, this pioneering text prepares students for graduates studies and careers as professional geoscientists.
Publisher: Cambridge University Press
ISBN: 1108661459
Category : Science
Languages : en
Pages : 454
Book Description
Tackling structural geology problems today requires a quantitative understanding of the underlying physical principles, and the ability to apply mathematical models to deformation processes within the Earth. Accessible yet rigorous, this unique textbook demonstrates how to approach structural geology quantitatively using calculus and mechanics, and prepares students to interface with professional geophysicists and engineers who appreciate and utilize the same tools and computational methods to solve multidisciplinary problems. Clearly explained methods are used throughout the book to quantify field data, set up mathematical models for the formation of structures, and compare model results to field observations. An extensive online package of coordinated laboratory exercises enables students to consolidate their learning and put it into practice by analyzing structural data and building insightful models. Designed for single-semester undergraduate courses, this pioneering text prepares students for graduates studies and careers as professional geoscientists.
Digital Terrain Analysis in Soil Science and Geology
Author: Igor Florinsky
Publisher: Academic Press
ISBN: 0128046333
Category : Science
Languages : en
Pages : 508
Book Description
Digital Terrain Analysis in Soil Science and Geology, Second Edition, synthesizes the knowledge on methods and applications of digital terrain analysis and geomorphometry in the context of multi-scale problems in soil science and geology. Divided into three parts, the book first examines main concepts, principles, and methods of digital terrain modeling. It then looks at methods for analysis, modeling, and mapping of spatial distribution of soil properties using digital terrain analysis, before finally considering techniques for recognition, analysis, and interpretation of topographically manifested geological features. Digital Terrain Analysis in Soil Science and Geology, Second Edition, is an updated and revised edition, providing both a theoretical and methodological basis for understanding and applying geographical modeling techniques. - Presents an integrated and unified view of digital terrain analysis in both soil science and geology - Features research on new advances in the field, including DEM analytical approximation, analytical calculation of local morphometric variables, morphometric globes, and two-dimensional generalized spectral analytical methods - Includes a rigorous description of the mathematical principles of digital terrain analysis - Provides both a theoretical and methodological basis for understanding and applying geographical modeling
Publisher: Academic Press
ISBN: 0128046333
Category : Science
Languages : en
Pages : 508
Book Description
Digital Terrain Analysis in Soil Science and Geology, Second Edition, synthesizes the knowledge on methods and applications of digital terrain analysis and geomorphometry in the context of multi-scale problems in soil science and geology. Divided into three parts, the book first examines main concepts, principles, and methods of digital terrain modeling. It then looks at methods for analysis, modeling, and mapping of spatial distribution of soil properties using digital terrain analysis, before finally considering techniques for recognition, analysis, and interpretation of topographically manifested geological features. Digital Terrain Analysis in Soil Science and Geology, Second Edition, is an updated and revised edition, providing both a theoretical and methodological basis for understanding and applying geographical modeling techniques. - Presents an integrated and unified view of digital terrain analysis in both soil science and geology - Features research on new advances in the field, including DEM analytical approximation, analytical calculation of local morphometric variables, morphometric globes, and two-dimensional generalized spectral analytical methods - Includes a rigorous description of the mathematical principles of digital terrain analysis - Provides both a theoretical and methodological basis for understanding and applying geographical modeling
Calcareous Nannofossil Biostratigraphy
Author: Michael Montenari
Publisher: Academic Press
ISBN: 0323851088
Category : Science
Languages : en
Pages : 484
Book Description
Stratigraphy & Timescales, Volume Six in the Advances in Sequence Stratigraphy series covers research in stratigraphic disciplines, including the most recent developments in the geosciences. This fully commissioned review publication aims to foster and convey progress in stratigraphy with its inclusion of a variety of topics, including Carbon isotope stratigraphy - principles and applications, Interpreting Phanerozoic d13C patterns as periodic glacio-eustatic sequences, Stable carbon isotopes in archaeological plant remains, Review of the Upper Ediacaran-Lower Cambrian Detrital Series in Central and North Iberia: NE Africa as possible Source Area, Calibrating d13C and d18O chemostratigraphic correlations across Cambrian strata of SW, and much more. - Contains contributions from leading authorities in the field - Informs and updates on all the latest developments in the field - Aims to foster and convey progress in stratigraphy, including geochronology, magnetostratigraphy, lithostratigraphy, event-stratigraphy, and more
Publisher: Academic Press
ISBN: 0323851088
Category : Science
Languages : en
Pages : 484
Book Description
Stratigraphy & Timescales, Volume Six in the Advances in Sequence Stratigraphy series covers research in stratigraphic disciplines, including the most recent developments in the geosciences. This fully commissioned review publication aims to foster and convey progress in stratigraphy with its inclusion of a variety of topics, including Carbon isotope stratigraphy - principles and applications, Interpreting Phanerozoic d13C patterns as periodic glacio-eustatic sequences, Stable carbon isotopes in archaeological plant remains, Review of the Upper Ediacaran-Lower Cambrian Detrital Series in Central and North Iberia: NE Africa as possible Source Area, Calibrating d13C and d18O chemostratigraphic correlations across Cambrian strata of SW, and much more. - Contains contributions from leading authorities in the field - Informs and updates on all the latest developments in the field - Aims to foster and convey progress in stratigraphy, including geochronology, magnetostratigraphy, lithostratigraphy, event-stratigraphy, and more
Handbook of Mathematical Geosciences
Author: B.S. Daya Sagar
Publisher: Springer
ISBN: 3319789996
Category : Science
Languages : en
Pages : 911
Book Description
This Open Access handbook published at the IAMG's 50th anniversary, presents a compilation of invited path-breaking research contributions by award-winning geoscientists who have been instrumental in shaping the IAMG. It contains 45 chapters that are categorized broadly into five parts (i) theory, (ii) general applications, (iii) exploration and resource estimation, (iv) reviews, and (v) reminiscences covering related topics like mathematical geosciences, mathematical morphology, geostatistics, fractals and multifractals, spatial statistics, multipoint geostatistics, compositional data analysis, informatics, geocomputation, numerical methods, and chaos theory in the geosciences.
Publisher: Springer
ISBN: 3319789996
Category : Science
Languages : en
Pages : 911
Book Description
This Open Access handbook published at the IAMG's 50th anniversary, presents a compilation of invited path-breaking research contributions by award-winning geoscientists who have been instrumental in shaping the IAMG. It contains 45 chapters that are categorized broadly into five parts (i) theory, (ii) general applications, (iii) exploration and resource estimation, (iv) reviews, and (v) reminiscences covering related topics like mathematical geosciences, mathematical morphology, geostatistics, fractals and multifractals, spatial statistics, multipoint geostatistics, compositional data analysis, informatics, geocomputation, numerical methods, and chaos theory in the geosciences.
Geomathematics
Author: Volker Michel
Publisher: Cambridge University Press
ISBN: 1108419445
Category : Mathematics
Languages : en
Pages : 467
Book Description
A comprehensive summary of the fundamental mathematical principles behind key topics in geophysics and geodesy. Each section begins with a problem in gravimetry, geomagnetics or seismology and analyses its mathematical features. With each chapter ending with a series of review questions, this is a valuable reference for students and researchers.
Publisher: Cambridge University Press
ISBN: 1108419445
Category : Mathematics
Languages : en
Pages : 467
Book Description
A comprehensive summary of the fundamental mathematical principles behind key topics in geophysics and geodesy. Each section begins with a problem in gravimetry, geomagnetics or seismology and analyses its mathematical features. With each chapter ending with a series of review questions, this is a valuable reference for students and researchers.
Inverse Magnetometry
Author: Christian Blick
Publisher: Springer Nature
ISBN: 303079508X
Category : Mathematics
Languages : en
Pages : 114
Book Description
This monograph presents the geoscientific context arising in decorrelative geomagnetic exploration. First, an insight into the current state of research is given by reducing magnetometry to mathematically accessible, and thus calculable, decorrelated models. In this way, various questions and problems of magnetometry are made available to a broad scientific audience and the exploration industry. New stimuli are given, and innovative ways of modeling geologic strata by mollifier magnetometric techniques are shown. Potential data sets primarily of terrestrial origin constitute the main data basis in the book. For deep geology, the geomathematical decorrelation methods are designed in such a way that depth information (e.g., in boreholes) may be canonically entered. Overall, this book provides pioneering and ground-breaking innovative mathematical knowledge as a transfer methodology from the “reality space” of magnetometric measurements into the “virtual space” of mathematical-numerical modeling structures and mollifier solutions with novel geological application areas. It pursues a double goal: On the one hand, it represents a geoscientific set of rules for today's geoengineering, interested in the application of innovative modelling and simulation techniques to promising data sets and structures occurring in geomagnetics. On the other hand, the book serves as a collection of current material in Applied Mathematics to offer alternative methodologies in the theory of inverse problems.
Publisher: Springer Nature
ISBN: 303079508X
Category : Mathematics
Languages : en
Pages : 114
Book Description
This monograph presents the geoscientific context arising in decorrelative geomagnetic exploration. First, an insight into the current state of research is given by reducing magnetometry to mathematically accessible, and thus calculable, decorrelated models. In this way, various questions and problems of magnetometry are made available to a broad scientific audience and the exploration industry. New stimuli are given, and innovative ways of modeling geologic strata by mollifier magnetometric techniques are shown. Potential data sets primarily of terrestrial origin constitute the main data basis in the book. For deep geology, the geomathematical decorrelation methods are designed in such a way that depth information (e.g., in boreholes) may be canonically entered. Overall, this book provides pioneering and ground-breaking innovative mathematical knowledge as a transfer methodology from the “reality space” of magnetometric measurements into the “virtual space” of mathematical-numerical modeling structures and mollifier solutions with novel geological application areas. It pursues a double goal: On the one hand, it represents a geoscientific set of rules for today's geoengineering, interested in the application of innovative modelling and simulation techniques to promising data sets and structures occurring in geomagnetics. On the other hand, the book serves as a collection of current material in Applied Mathematics to offer alternative methodologies in the theory of inverse problems.