Geochemical Constraints for Mechanisms of Planetary Differentiation and Volatile Depletion

Geochemical Constraints for Mechanisms of Planetary Differentiation and Volatile Depletion PDF Author: Jasmeet Kaur Dhaliwal
Publisher:
ISBN:
Category :
Languages : en
Pages : 216

Get Book Here

Book Description
The evolution of the terrestrial planets involved a range of complex processes, including accretion, core formation, post-core formation accretion, mantle differentiation and volatile depletion. The earliest processes of accretion and core formation have largely been overprinted on Earth and Mars, but can be investigated using geochemical measurements of extraterrestrial materials. Highly siderophile elements (HSE; Os, Ir, Ru, Rh, Pt, Pd, Re, Au) preferentially partition into metal phases and are therefore powerful tracers for examining mechanisms of core formation on partially differentiated bodies, and differentiation and post-core formation late accretion on fully differentiated planetesimals. Chapter 2 examines the partially-melted, primitive acapulcoite and lodranite meteorites for insight into metal segregation and metal-sulfide partitioning. This work examines the effects of sulfur on HSE partitioning during the earliest stages of core formation, and allows identification of samples that may have derived near the nascent core of the acapulcoite-lodranite parent body. Chapter 3 consists of detailed measurements of the HSE and Os isotopes in eucrite meteorites, revealing new insight into metal-silicate and differentiation of the Asteroid-4 Vesta. These data are used to identify pristine eucrite samples that may represent the first natural examples of metal-silicate signatures of primary planetary differentiation in the Solar System. The fourth chapter transitions to volatile depletion, and investigates the potential for volatile loss using a model of magma ocean differentiation and constraints from zinc abundance and isotope data in lunar samples. The models constructed demonstrate that the lunar zinc signature, which reflects wholesale volatile depletion from the Moon, can be explained by surface volatile depletion and subsequent homogenization in a magma ocean. The continuum from core formation, to metal-silicate differentiation and late accretion, to volatile loss provides an overview of planet formation through detailed measurements and analysis of these fundamental mechanisms that occurred during terrestrial planet evolution in the Solar System.

Geochemical Constraints for Mechanisms of Planetary Differentiation and Volatile Depletion

Geochemical Constraints for Mechanisms of Planetary Differentiation and Volatile Depletion PDF Author: Jasmeet Kaur Dhaliwal
Publisher:
ISBN:
Category :
Languages : en
Pages : 216

Get Book Here

Book Description
The evolution of the terrestrial planets involved a range of complex processes, including accretion, core formation, post-core formation accretion, mantle differentiation and volatile depletion. The earliest processes of accretion and core formation have largely been overprinted on Earth and Mars, but can be investigated using geochemical measurements of extraterrestrial materials. Highly siderophile elements (HSE; Os, Ir, Ru, Rh, Pt, Pd, Re, Au) preferentially partition into metal phases and are therefore powerful tracers for examining mechanisms of core formation on partially differentiated bodies, and differentiation and post-core formation late accretion on fully differentiated planetesimals. Chapter 2 examines the partially-melted, primitive acapulcoite and lodranite meteorites for insight into metal segregation and metal-sulfide partitioning. This work examines the effects of sulfur on HSE partitioning during the earliest stages of core formation, and allows identification of samples that may have derived near the nascent core of the acapulcoite-lodranite parent body. Chapter 3 consists of detailed measurements of the HSE and Os isotopes in eucrite meteorites, revealing new insight into metal-silicate and differentiation of the Asteroid-4 Vesta. These data are used to identify pristine eucrite samples that may represent the first natural examples of metal-silicate signatures of primary planetary differentiation in the Solar System. The fourth chapter transitions to volatile depletion, and investigates the potential for volatile loss using a model of magma ocean differentiation and constraints from zinc abundance and isotope data in lunar samples. The models constructed demonstrate that the lunar zinc signature, which reflects wholesale volatile depletion from the Moon, can be explained by surface volatile depletion and subsequent homogenization in a magma ocean. The continuum from core formation, to metal-silicate differentiation and late accretion, to volatile loss provides an overview of planet formation through detailed measurements and analysis of these fundamental mechanisms that occurred during terrestrial planet evolution in the Solar System.

Deep Carbon

Deep Carbon PDF Author: Beth N. Orcutt
Publisher: Cambridge University Press
ISBN: 1108477496
Category : Nature
Languages : en
Pages : 687

Get Book Here

Book Description
A comprehensive guide to carbon inside Earth - its quantities, movements, forms, origins, changes over time and impact on planetary processes. This title is also available as Open Access on Cambridge Core.

The Early Earth

The Early Earth PDF Author: James Badro
Publisher: John Wiley & Sons
ISBN: 1118860578
Category : Science
Languages : en
Pages : 193

Get Book Here

Book Description
The Early Earth: Accretion and Differentiation provides a multidisciplinary overview of the state of the art in understanding the formation and primordial evolution of the Earth. The fundamental structure of the Earth as we know it today was inherited from the initial conditions 4.56 billion years ago as a consequence of planetesimal accretion, large impacts among planetary objects, and planetary-scale differentiation. The evolution of the Earth from a molten ball of metal and magma to the tectonically active, dynamic, habitable planet that we know today is unique among the terrestrial planets, and understanding the earliest processes that led to Earth’s current state is the essence of this volume. Important results have emerged from a wide range of disciplines including cosmochemistry, geochemistry, experimental petrology, experimental and theoretical mineral physics and geodynamics. The topics in this volume include: Condensation of primitive objects in the solar nebula, planetary building blocks Early and late accretion and planetary dynamic modeling Primordial differentiation, core formation, Magma Ocean evolution and crystallization This volume will be a valuable resource for graduate students, academics, and researchers in the fields of geophysics, geochemistry, cosmochemistry, and planetary science.

Cosmochemistry

Cosmochemistry PDF Author: Harry McSween, Jr
Publisher: Cambridge University Press
ISBN: 1108879594
Category : Science
Languages : en
Pages : 453

Get Book Here

Book Description
Cosmochemistry is a rapidly evolving field of planetary science and the second edition of this classic text reflects the exciting discoveries made over the past decade from new spacecraft missions. Topics covered include the synthesis of elements in stars, behaviour of elements and isotopes in the early solar nebula and planetary bodies, and compositions of extra-terrestrial materials. Radioisotope chronology of the early Solar System is also discussed, as well as geochemical exploration of planets by spacecraft, and cosmochemical constraints on the formation of solar systems. Thoroughly updated throughout, this new edition features significantly expanded coverage of chemical fractionation and isotopic analyses; focus boxes covering basic definitions and essential background material on mineralogy, organic chemistry and quantitative topics; and a comprehensive glossary. An appendix of analytical techniques and end-of-chapter review questions, with solutions available at www.cambridge.org/cosmochemistry2e, also contribute to making this the ideal teaching resource for courses on the Solar System's composition as well as a valuable reference for early career researchers.

Highly Siderophile and Strongly Chalcophile Elements in High-Temperature Geochemistry and Cosmochemistry

Highly Siderophile and Strongly Chalcophile Elements in High-Temperature Geochemistry and Cosmochemistry PDF Author: Jason Harvey
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 1501502093
Category : Science
Languages : en
Pages : 798

Get Book Here

Book Description
Highly Siderophile and Strongly Chalcophile Elements in High Temperature Geochemistry and Cosmochemistry, Volume 81 This RiMG (Reviews in Mineralogy & Geochemistry) volume investigates the application of highly siderophile (HSE) and strongly chalcophile elements. This volume has its origin in a short course sponsored by the Mineralogical Society of America and the Geochemical Society held in San Diego, California on the 11th and 12th December 2015, ahead of the American Geophysical Union’s Fall Meeting, which featured a session with the same title. Topics in this volume include: analytical methods and data quality experimental constraints applied to understanding HSE partitioning nucleosynthetic variations of siderophile and chalcophile elements HSE in the Earth, Moon, Mars and asteroidal bodies HSE and chalcophile elements in both cratonic and non-cratonic mantle, encompassing both sub-continental and sub-oceanic lithosphere the importance of the HSE for studying volcanic and magmatic processes, and an appraisal of the importance of magmatic HSE ore formation in Earth’s crust. Highly siderophile and strongly chalcophile elements comprise Re, Os, Ir, Ru, Pt, Rh, Pd, Au, Te, Se and S and are defined by their strong partitioning into the metallic phase, but will also strongly partition into sulfide phases, in the absence of metal. The chemical properties of the HSE mean that they are excellent tracers of key processes in high temperature geochemistry and cosmochemistry, having applications in virtually all areas of earth science. A key aspect of the HSE is that three long-lived, geologically useful decay systems exist with the HSE as parent (107Pd-107Ag), or parent-daughter isotopes (187Re-187Os and 190Pt-186Os). The material in this book is accessible for graduate students, researchers, and professionals with interests in the geochemistry and cosmochemistry of these elements, geochronology, magmatic ore bodies and the petrogenesis of platinum-group minerals.

Treatise on Geophysics, Volume 9

Treatise on Geophysics, Volume 9 PDF Author: David Stevenson
Publisher: Elsevier
ISBN: 044453573X
Category : Science
Languages : en
Pages : 335

Get Book Here

Book Description
Evolution of the Earth focuses on the formation of Earth. Topics include the differention of the core, mantle and crust; the formation of the ocean basins and continents; outgassing and volcanism; the initiation of plate tectonics, the origin and persistence of Earth's magnetic field; the growth of the inner core; changes in mantle convection through time; and the impact of life on the planet. The volume takes an interdisciplinary viewpoint that emphasizes the interplay of geophysics, other aspects of earth science and biological evolution. Some outstanding questions are identified and debated. Self-contained volume starts with an overview of the subject then explores each topic with in depth detail Extensive reference lists and cross references with other volumes to facilitate further research Full-color figures and tables support the text and aid in understanding Content suited for both the expert and non-expert

Meteorites and the Early Solar System II

Meteorites and the Early Solar System II PDF Author: Dante S. Lauretta
Publisher: University of Arizona Press
ISBN: 9780816525621
Category : Science
Languages : en
Pages : 992

Get Book Here

Book Description
They range in size from microscopic particles to masses of many tons. The geologic diversity of asteroids and other rocky bodies of the solar system are displayed in the enormous variety of textures and mineralogies observed in meteorites. The composition, chemistry, and mineralogy of primitive meteorites collectively provide evidence for a wide variety of chemical and physical processes. This book synthesizes our current understanding of the early solar system, summarizing information about processes that occurred before its formation. It will be valuable as a textbook for graduate education in planetary science and as a reference for meteoriticists and researchers in allied fields worldwide.

Non-Traditional Stable Isotopes

Non-Traditional Stable Isotopes PDF Author: Fang-Zhen Teng
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110545632
Category : Science
Languages : en
Pages : 902

Get Book Here

Book Description
The development of multi-collector inductively coupled plasma mass spectrometry (MC-ICPMS) makes it possible to precisely measure non-traditional stable isotopes. This volume reviews the current status of non-traditional isotope geochemistry from analytical, theoretical, and experimental approaches to analysis of natural samples. In particular, important applications to cosmochemistry, high-temperature geochemistry, low-temperature geochemistry, and geobiology are discussed. This volume provides the most comprehensive review on non-traditional isotope geochemistry for students and researchers who are interested in both the theory and applications of non-traditional stable isotope geochemistry.

Using Geochemical Data

Using Geochemical Data PDF Author: Hugh Rollinson
Publisher: Cambridge University Press
ISBN: 1108803822
Category : Science
Languages : en
Pages : 359

Get Book Here

Book Description
This textbook is a complete rewrite, and expansion of Hugh Rollinson's highly successful 1993 book Using Geochemical Data: Evaluation, Presentation, Interpretation. Rollinson and Pease's new book covers the explosion in geochemical thinking over the past three decades, as new instruments and techniques have come online. It provides a comprehensive overview of how modern geochemical data are used in the understanding of geological and petrological processes. It covers major element, trace element, and radiogenic and stable isotope geochemistry. It explains the potential of many geochemical techniques, provides examples of their application, and emphasizes how to interpret the resulting data. Additional topics covered include the critical statistical analysis of geochemical data, current geochemical techniques, effective display of geochemical data, and the application of data in problem solving and identifying petrogenetic processes within a geological context. It will be invaluable for all graduate students, researchers, and professionals using geochemical techniques.

Steelmaking Data Sourcebook

Steelmaking Data Sourcebook PDF Author: Nihon Gakujutsu Shinkōkai. Seikō Dai 19 Iinkai
Publisher: Routledge
ISBN:
Category : Science
Languages : en
Pages : 362

Get Book Here

Book Description