Author: David F. Van Haverbeke
Publisher:
ISBN:
Category : Spruce
Languages : en
Pages : 12
Book Description
Analyses of 43 blue spruce populations at age 12 (9 years in the field) revealed significant differences among populations for survival, height, vigor, crown diameter, frost injury, and foliage color. Use of regions increases the probability of locating better seeds sources, but high variability among individual populations within regions limits their value in specifying where better seed sources can be collected. Phenotypes should be selected in best stands within regions.
Genetic Variation in Blue Spruce
Author: David F. Van Haverbeke
Publisher:
ISBN:
Category : Spruce
Languages : en
Pages : 12
Book Description
Analyses of 43 blue spruce populations at age 12 (9 years in the field) revealed significant differences among populations for survival, height, vigor, crown diameter, frost injury, and foliage color. Use of regions increases the probability of locating better seeds sources, but high variability among individual populations within regions limits their value in specifying where better seed sources can be collected. Phenotypes should be selected in best stands within regions.
Publisher:
ISBN:
Category : Spruce
Languages : en
Pages : 12
Book Description
Analyses of 43 blue spruce populations at age 12 (9 years in the field) revealed significant differences among populations for survival, height, vigor, crown diameter, frost injury, and foliage color. Use of regions increases the probability of locating better seeds sources, but high variability among individual populations within regions limits their value in specifying where better seed sources can be collected. Phenotypes should be selected in best stands within regions.
Genetics of Blue Spruce
Author: James W. Hanover
Publisher:
ISBN:
Category : Spruce
Languages : en
Pages : 20
Book Description
Publisher:
ISBN:
Category : Spruce
Languages : en
Pages : 20
Book Description
Genetic Variation of Morphological and Physiological Traits in Blue and Engelmann Spruce
Author: George Philip Buchert
Publisher:
ISBN:
Category : Colorado spruce
Languages : en
Pages : 302
Book Description
Publisher:
ISBN:
Category : Colorado spruce
Languages : en
Pages : 302
Book Description
The Conifers: Genomes, Variation and Evolution
Author: David B. Neale
Publisher: Springer
ISBN: 3319468073
Category : Science
Languages : en
Pages : 593
Book Description
This book is the first comprehensive volume on conifers detailing their genomes, variations, and evolution. The book begins with general information about conifers such as taxonomy, geography, reproduction, life history, and social and economic importance. Then topics discussed include the full genome sequence, complex traits, phenotypic and genetic variations, landscape genomics, and forest health and conservation. This book also synthesizes the research included to provide a bigger picture and suggest an evolutionary trajectory. As a large plant family, conifers are an important part of economic botany. The group includes the pines, spruces, firs, larches, yews, junipers, cedars, cypresses, and sequoias. Of the phylum Coniferophyta, conifers typically bear cones and evergreen leaves. Recently, there has been much data available in conifer genomics with the publication of several crop and non-crop genome sequences. In addition to their economic importance, conifers are an important habitat for humans and animals, especially in developing parts of the world. The application of genomics for improving the productivity of conifer crops holds great promise to help provide resources for the most needy in the world.
Publisher: Springer
ISBN: 3319468073
Category : Science
Languages : en
Pages : 593
Book Description
This book is the first comprehensive volume on conifers detailing their genomes, variations, and evolution. The book begins with general information about conifers such as taxonomy, geography, reproduction, life history, and social and economic importance. Then topics discussed include the full genome sequence, complex traits, phenotypic and genetic variations, landscape genomics, and forest health and conservation. This book also synthesizes the research included to provide a bigger picture and suggest an evolutionary trajectory. As a large plant family, conifers are an important part of economic botany. The group includes the pines, spruces, firs, larches, yews, junipers, cedars, cypresses, and sequoias. Of the phylum Coniferophyta, conifers typically bear cones and evergreen leaves. Recently, there has been much data available in conifer genomics with the publication of several crop and non-crop genome sequences. In addition to their economic importance, conifers are an important habitat for humans and animals, especially in developing parts of the world. The application of genomics for improving the productivity of conifer crops holds great promise to help provide resources for the most needy in the world.
Research Paper RM.
Author:
Publisher:
ISBN:
Category : Forests and forestry
Languages : en
Pages : 466
Book Description
Publisher:
ISBN:
Category : Forests and forestry
Languages : en
Pages : 466
Book Description
Silvical Characteristics of Blue Spruce
Author: Gilbert H. Fechner
Publisher:
ISBN:
Category : Forests and forestry
Languages : en
Pages : 28
Book Description
Publisher:
ISBN:
Category : Forests and forestry
Languages : en
Pages : 28
Book Description
Genetics of Engelmann Spruce
Author: Donald Paige Fowler
Publisher:
ISBN:
Category : Engelmann spruce
Languages : en
Pages : 20
Book Description
Publisher:
ISBN:
Category : Engelmann spruce
Languages : en
Pages : 20
Book Description
Population Genetics of Forest Trees
Author: W.T. Adams
Publisher: Springer Science & Business Media
ISBN: 9401128154
Category : Science
Languages : en
Pages : 423
Book Description
Tropical climates, which occur between 23°30'N and S latitude (Jacob 1988), encompass a wide variety of plant communities (Hartshorn 1983, 1988), many of which are diverse in their woody floras. Within this geographic region, temperature and the amount and seasonality of rainfall define habitat types (UNESCO 1978). The F AO has estimated that there 1 are about 19 million km of potentially forested area in the global tropics, of which 58% were estimated to still be in closed forest in the mid-1970s (Sommers 1976; UNESCO 1978). Of this potentially forested region, 42% is categorized as dry forest lifezone, 33% is tropical moist forest, and 25% is wet or rain forest (Lugo 1988). The species diversity of these tropical habitats is very high. Raven (1976, in Mooney 1988) estimated that 65% of the 250,000 or more plant species of the earth are found in tropical regions. Of this floristic assemblage, a large fraction are woody species. In the well-collected tropical moist forest of Barro Colorado Island, Panama, 39. 7% (481 of 1212 species) of the native phanerogams are woody, arborescent species (Croat 1978). Another 21. 9% are woody vines and lianas. Southeast Asian Dipterocarp forests may contain 120-200 species of trees per hectare (Whitmore 1984), and recent surveys in upper Amazonia re corded from 89 to 283 woody species ~ 10 cm dbh per hectare (Gentry 1988). Tropical communities thus represent a global woody flora of significant scope.
Publisher: Springer Science & Business Media
ISBN: 9401128154
Category : Science
Languages : en
Pages : 423
Book Description
Tropical climates, which occur between 23°30'N and S latitude (Jacob 1988), encompass a wide variety of plant communities (Hartshorn 1983, 1988), many of which are diverse in their woody floras. Within this geographic region, temperature and the amount and seasonality of rainfall define habitat types (UNESCO 1978). The F AO has estimated that there 1 are about 19 million km of potentially forested area in the global tropics, of which 58% were estimated to still be in closed forest in the mid-1970s (Sommers 1976; UNESCO 1978). Of this potentially forested region, 42% is categorized as dry forest lifezone, 33% is tropical moist forest, and 25% is wet or rain forest (Lugo 1988). The species diversity of these tropical habitats is very high. Raven (1976, in Mooney 1988) estimated that 65% of the 250,000 or more plant species of the earth are found in tropical regions. Of this floristic assemblage, a large fraction are woody species. In the well-collected tropical moist forest of Barro Colorado Island, Panama, 39. 7% (481 of 1212 species) of the native phanerogams are woody, arborescent species (Croat 1978). Another 21. 9% are woody vines and lianas. Southeast Asian Dipterocarp forests may contain 120-200 species of trees per hectare (Whitmore 1984), and recent surveys in upper Amazonia re corded from 89 to 283 woody species ~ 10 cm dbh per hectare (Gentry 1988). Tropical communities thus represent a global woody flora of significant scope.
The Spruce Genome
Author: Ilga M. Porth
Publisher: Springer Nature
ISBN: 3030210014
Category : Science
Languages : en
Pages : 225
Book Description
This book offers comprehensive information on the genomics of spruces (Picea spp.), naturally abundant conifer tree species that are widely distributed in the Northern Hemisphere. Due to their tremendous ecological and economic importance, the management of forest genetic resources has chiefly focused on conservation and tree improvement. A draft genome sequence of the 20-gigabase Norway spruce genome was published in the journal Nature in 2013. Continuous efforts to improve the spruce genome assembly are underway, but are hindered by the inherent characteristics of conifer genomes: high amounts of repetitive sequences (introns and transposable elements) in the genome and large gene family expansions with regards to abiotic stress, secondary metabolism and spruces' defense responses to pathogens and herbivory. This book presents the latest information on the status of genome assemblies, provides detailed insights into transposable elements and methylation patterns, and highlights the extensive genomic resources available for inferring population genomics and climate adaptation, as well as emerging genomics tools for tree improvement programs. In addition, this volume features whole-genome comparisons among conifer species, and demonstrates how functional genomics can be used to improve gene function annotations. The book closes with an outlook on emerging fields of research in spruce genomics.
Publisher: Springer Nature
ISBN: 3030210014
Category : Science
Languages : en
Pages : 225
Book Description
This book offers comprehensive information on the genomics of spruces (Picea spp.), naturally abundant conifer tree species that are widely distributed in the Northern Hemisphere. Due to their tremendous ecological and economic importance, the management of forest genetic resources has chiefly focused on conservation and tree improvement. A draft genome sequence of the 20-gigabase Norway spruce genome was published in the journal Nature in 2013. Continuous efforts to improve the spruce genome assembly are underway, but are hindered by the inherent characteristics of conifer genomes: high amounts of repetitive sequences (introns and transposable elements) in the genome and large gene family expansions with regards to abiotic stress, secondary metabolism and spruces' defense responses to pathogens and herbivory. This book presents the latest information on the status of genome assemblies, provides detailed insights into transposable elements and methylation patterns, and highlights the extensive genomic resources available for inferring population genomics and climate adaptation, as well as emerging genomics tools for tree improvement programs. In addition, this volume features whole-genome comparisons among conifer species, and demonstrates how functional genomics can be used to improve gene function annotations. The book closes with an outlook on emerging fields of research in spruce genomics.
Interspecific and Intraspecific Variation in Picea Engelmannii and Its Congeneric Cohorts
Author: G. E. Rehfeldt
Publisher:
ISBN:
Category : Engelmann spruce
Languages : en
Pages : 24
Book Description
A series of common garden studies of 336 populations representing Picea engelmannii, P. pungens, P. glauca, P. mexicana, and P. chihuahuana provided as many as 13 growth and morphologic characters pertinent to biosystematics and genecology. Canonical discriminant analyses discretely segregated populations of P. pungens and P. chihuahuana while positioning P. engelmannii populations along a continuum anchored by Southwestern United States populations at one extreme and those classified as hybrids of P.engelmannii with P. glauca on the other. A population of P. mexicana was closely aligned with Southwest populations of P. engelmannii, while populations of P. glauca were intermixed with and peripheral to those identified as hybrid. While consistent with most taxonomic treatments of these taxa, the analyses nonetheless suggested that Southwestern United States populations should be considered as a variety of P. engelmannii that most likely should include P. mexicana. Genecological analyses detected ample genetic variation among the 295 populations in the P. engelmannii complex. The analyses demonstrated that populations were distributed along clines driven primarily by the winter temperature regime of the provenance. For northern populations, summer temperatures also became a key factor in accounting for genetic differences among populations. Analyses also detected clines for the 19 P. pungens and 23 P. glauca populations. An assessment of the effects of global warming according to the IS92a scenario of two general circulation models demonstrated for the current century: (1) an increasingly favorable climate for P. pungrens as its distribution moves upward in elevation throughout much of the Great Basin, Colorado Rockies, and mountain islands of the Southwest; (2) a widespread reduction in the areal extent of P. engelmannii in the inland Northwestern United States to the extent that Picea may become rare in the local flora; (3) extirpation of P. glauca from the Black Hills and Cypress Hills; and (4) a widespread redistribution of genotypes across the landscape as contemporary populations adjust genetically to change.
Publisher:
ISBN:
Category : Engelmann spruce
Languages : en
Pages : 24
Book Description
A series of common garden studies of 336 populations representing Picea engelmannii, P. pungens, P. glauca, P. mexicana, and P. chihuahuana provided as many as 13 growth and morphologic characters pertinent to biosystematics and genecology. Canonical discriminant analyses discretely segregated populations of P. pungens and P. chihuahuana while positioning P. engelmannii populations along a continuum anchored by Southwestern United States populations at one extreme and those classified as hybrids of P.engelmannii with P. glauca on the other. A population of P. mexicana was closely aligned with Southwest populations of P. engelmannii, while populations of P. glauca were intermixed with and peripheral to those identified as hybrid. While consistent with most taxonomic treatments of these taxa, the analyses nonetheless suggested that Southwestern United States populations should be considered as a variety of P. engelmannii that most likely should include P. mexicana. Genecological analyses detected ample genetic variation among the 295 populations in the P. engelmannii complex. The analyses demonstrated that populations were distributed along clines driven primarily by the winter temperature regime of the provenance. For northern populations, summer temperatures also became a key factor in accounting for genetic differences among populations. Analyses also detected clines for the 19 P. pungens and 23 P. glauca populations. An assessment of the effects of global warming according to the IS92a scenario of two general circulation models demonstrated for the current century: (1) an increasingly favorable climate for P. pungrens as its distribution moves upward in elevation throughout much of the Great Basin, Colorado Rockies, and mountain islands of the Southwest; (2) a widespread reduction in the areal extent of P. engelmannii in the inland Northwestern United States to the extent that Picea may become rare in the local flora; (3) extirpation of P. glauca from the Black Hills and Cypress Hills; and (4) a widespread redistribution of genotypes across the landscape as contemporary populations adjust genetically to change.