Author: National Research Council
Publisher: National Academies Press
ISBN: 0309038405
Category : Science
Languages : en
Pages : 128
Book Description
There is growing enthusiasm in the scientific community about the prospect of mapping and sequencing the human genome, a monumental project that will have far-reaching consequences for medicine, biology, technology, and other fields. But how will such an effort be organized and funded? How will we develop the new technologies that are needed? What new legal, social, and ethical questions will be raised? Mapping and Sequencing the Human Genome is a blueprint for this proposed project. The authors offer a highly readable explanation of the technical aspects of genetic mapping and sequencing, and they recommend specific interim and long-range research goals, organizational strategies, and funding levels. They also outline some of the legal and social questions that might arise and urge their early consideration by policymakers.
Mapping and Sequencing the Human Genome
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309038405
Category : Science
Languages : en
Pages : 128
Book Description
There is growing enthusiasm in the scientific community about the prospect of mapping and sequencing the human genome, a monumental project that will have far-reaching consequences for medicine, biology, technology, and other fields. But how will such an effort be organized and funded? How will we develop the new technologies that are needed? What new legal, social, and ethical questions will be raised? Mapping and Sequencing the Human Genome is a blueprint for this proposed project. The authors offer a highly readable explanation of the technical aspects of genetic mapping and sequencing, and they recommend specific interim and long-range research goals, organizational strategies, and funding levels. They also outline some of the legal and social questions that might arise and urge their early consideration by policymakers.
Publisher: National Academies Press
ISBN: 0309038405
Category : Science
Languages : en
Pages : 128
Book Description
There is growing enthusiasm in the scientific community about the prospect of mapping and sequencing the human genome, a monumental project that will have far-reaching consequences for medicine, biology, technology, and other fields. But how will such an effort be organized and funded? How will we develop the new technologies that are needed? What new legal, social, and ethical questions will be raised? Mapping and Sequencing the Human Genome is a blueprint for this proposed project. The authors offer a highly readable explanation of the technical aspects of genetic mapping and sequencing, and they recommend specific interim and long-range research goals, organizational strategies, and funding levels. They also outline some of the legal and social questions that might arise and urge their early consideration by policymakers.
The Handbook of Plant Genome Mapping
Author: Khalid Meksem
Publisher: John Wiley & Sons
ISBN: 352760443X
Category : Science
Languages : en
Pages : 402
Book Description
While the complete sequencing of the genomes of model organisms such as a multitude of bacteria and archaea, the yeast Saccharomyces cerevisiae, the worm Caenorhabditis elegans, the fly Drosophila melanogaster, and the mouse and human genomes have received much public attention, the deciphering of plant genomeswas greatly lagging behind. Up to now, only two plant genomes, one of the model plant Arabidopsis thaliana and one of the crop species rice (Oryza sativa) have been sequenced, though a series of other crop genome sequencing projects are underway. Notwithstanding this public bias towards genomics of animals and humans, it is nevertheless of great importance for basic and applied sciences and industries in such diverse fields as agriculture, breeding in particular, evolutionary genetics, biotechnology, and food science to know the composition of crop plant genomes in detail. It is equally crucial for a deeper understanding of the molecular basis of biodiversity and synteny. The Handbook of Genome Mapping: Genetic and Physical Mapping is the first book on the market to cover these hot topics in considerable detail, and is set apart by its combination of genetic and physical mapping. Throughout, each chapter begins with an easy-to-read introduction, also making the book the first reference designed for non-specialists and newcomers, too. In addition to being an outstanding bench work reference, the book is an excellent textbook for learning and teaching genomics, in particular for courses on genome mapping. It also serves as an up-to-date guide for seasoned researchers involved in the genetic and physical mapping of genomes, especially plant genomes.
Publisher: John Wiley & Sons
ISBN: 352760443X
Category : Science
Languages : en
Pages : 402
Book Description
While the complete sequencing of the genomes of model organisms such as a multitude of bacteria and archaea, the yeast Saccharomyces cerevisiae, the worm Caenorhabditis elegans, the fly Drosophila melanogaster, and the mouse and human genomes have received much public attention, the deciphering of plant genomeswas greatly lagging behind. Up to now, only two plant genomes, one of the model plant Arabidopsis thaliana and one of the crop species rice (Oryza sativa) have been sequenced, though a series of other crop genome sequencing projects are underway. Notwithstanding this public bias towards genomics of animals and humans, it is nevertheless of great importance for basic and applied sciences and industries in such diverse fields as agriculture, breeding in particular, evolutionary genetics, biotechnology, and food science to know the composition of crop plant genomes in detail. It is equally crucial for a deeper understanding of the molecular basis of biodiversity and synteny. The Handbook of Genome Mapping: Genetic and Physical Mapping is the first book on the market to cover these hot topics in considerable detail, and is set apart by its combination of genetic and physical mapping. Throughout, each chapter begins with an easy-to-read introduction, also making the book the first reference designed for non-specialists and newcomers, too. In addition to being an outstanding bench work reference, the book is an excellent textbook for learning and teaching genomics, in particular for courses on genome mapping. It also serves as an up-to-date guide for seasoned researchers involved in the genetic and physical mapping of genomes, especially plant genomes.
Next-Generation Genome Sequencing
Author: Michal Janitz
Publisher: John Wiley & Sons
ISBN: 3527644733
Category : Science
Languages : en
Pages : 281
Book Description
Written by leading experts from industry and academia, this first single comprehensive resource addresses recent developments in next generation DNA sequencing technology and their impact on genome research, drug discovery and health care. As such, it presents a detailed comparative analysis of commercially available platforms as well as insights into alternative, emerging sequencing techniques. In addition, the book not only covers the principles of DNA sequencing techniques but also social, ethical and commercial aspects, the concept of personalized medicine and a five-year perspective of DNA sequencing.
Publisher: John Wiley & Sons
ISBN: 3527644733
Category : Science
Languages : en
Pages : 281
Book Description
Written by leading experts from industry and academia, this first single comprehensive resource addresses recent developments in next generation DNA sequencing technology and their impact on genome research, drug discovery and health care. As such, it presents a detailed comparative analysis of commercially available platforms as well as insights into alternative, emerging sequencing techniques. In addition, the book not only covers the principles of DNA sequencing techniques but also social, ethical and commercial aspects, the concept of personalized medicine and a five-year perspective of DNA sequencing.
Mapping Humanity
Author: Joshua Z. Rappoport
Publisher: BenBella Books
ISBN: 1950665259
Category : Technology & Engineering
Languages : en
Pages : 249
Book Description
"A good companion for those with a science background interested in learning more about human genetics." —Booklist Thanks to the popularity of personal genetic testing services, it's now easier than ever to get information about our own unique DNA—but who does this information really benefit? And, as genome editing and gene therapy transform the healthcare landscape, what do we gain—and what might we give up in return? Inside each of your cells is the nucleus, a small structure that contains all of the genetic information encoded by the DNA inside, your genome. Not long ago, the first human genome was sequenced at a cost of nearly $3 billion; now, this same test can be done for about $1,000. This new accessibility of genome sequence information creates huge potential for advances in how we understand and treat disease, among other things. It also raises significant concerns regarding ethics and personal privacy. In Mapping Humanity: How Modern Genetics Is Changing Criminal Justice, Personalized Medicine, and Our Identities, cellular biology expert Joshua Z. Rappoport provides a detailed look at how the explosion in genetic information as a result of cutting-edge technologies is changing our lives and our world. Inside, discover: • An in-depth look at how your personal genome creates the unique individual that you are • How doctors are using DNA sequencing to identify the underlying genetic causes of disease • Why the field of gene therapy offers amazing potential for medical breakthroughs—and why it's taking so long • The fantastic potential—and troubling concerns—surrounding genome editing • The real impact—and validity—of popular personal genetic testing products, such as 23andMe • Details of how molecular biology and DNA are changing the criminal justice system • Facts you should know about Genetically Modified Organisms (GMOs) Throughout, in compelling, accessible prose, Rappoport explores the societal, ethical, and economic impacts of this new era. Offering a framework for balancing the potential risks and benefits of genetic information technologies and genetic engineering, Mapping Humanity is an indispensable guide to navigating the possibilities and perils of our gene-centric future.
Publisher: BenBella Books
ISBN: 1950665259
Category : Technology & Engineering
Languages : en
Pages : 249
Book Description
"A good companion for those with a science background interested in learning more about human genetics." —Booklist Thanks to the popularity of personal genetic testing services, it's now easier than ever to get information about our own unique DNA—but who does this information really benefit? And, as genome editing and gene therapy transform the healthcare landscape, what do we gain—and what might we give up in return? Inside each of your cells is the nucleus, a small structure that contains all of the genetic information encoded by the DNA inside, your genome. Not long ago, the first human genome was sequenced at a cost of nearly $3 billion; now, this same test can be done for about $1,000. This new accessibility of genome sequence information creates huge potential for advances in how we understand and treat disease, among other things. It also raises significant concerns regarding ethics and personal privacy. In Mapping Humanity: How Modern Genetics Is Changing Criminal Justice, Personalized Medicine, and Our Identities, cellular biology expert Joshua Z. Rappoport provides a detailed look at how the explosion in genetic information as a result of cutting-edge technologies is changing our lives and our world. Inside, discover: • An in-depth look at how your personal genome creates the unique individual that you are • How doctors are using DNA sequencing to identify the underlying genetic causes of disease • Why the field of gene therapy offers amazing potential for medical breakthroughs—and why it's taking so long • The fantastic potential—and troubling concerns—surrounding genome editing • The real impact—and validity—of popular personal genetic testing products, such as 23andMe • Details of how molecular biology and DNA are changing the criminal justice system • Facts you should know about Genetically Modified Organisms (GMOs) Throughout, in compelling, accessible prose, Rappoport explores the societal, ethical, and economic impacts of this new era. Offering a framework for balancing the potential risks and benefits of genetic information technologies and genetic engineering, Mapping Humanity is an indispensable guide to navigating the possibilities and perils of our gene-centric future.
Mapping our genes : the genome projects : how big, how fast?
Author:
Publisher: DIANE Publishing
ISBN: 142892258X
Category : Gene mapping
Languages : en
Pages : 215
Book Description
Publisher: DIANE Publishing
ISBN: 142892258X
Category : Gene mapping
Languages : en
Pages : 215
Book Description
The Amaranth Genome
Author: Dinesh Adhikary
Publisher: Springer Nature
ISBN: 3030723658
Category : Science
Languages : en
Pages : 181
Book Description
This book describes the development of genetic resources in amaranths, with a major focus on genomics, reverse, and forward genetics tools and strategies that have been developed for crop improvement. Amaranth is an ancient crop native to the New World. Interest in amaranths is being renewed, due to their adaptability, stress tolerance, and nutritional value. There are about 65 species in the genus, including Amaranthus caudatus L., A. cruentus L., and A. hypochondriacus L., which are primarily grown as protein-rich grains or pseudocereals. The genus also includes major noxious weeds (e.g., A. palmeri). The amaranths are within the Caryophyllales order and thus many species (e.g., A. tricolor) produce red (betacyanin) or yellow (betaxanthin) betalain pigments, which are chemically distinct from the anthocyanins responsible for red pigmentation in other plants. A. hypochondriacus, which shows disomic inheritance (2n = 32; n= 466 Mb), has been sequenced and annotated with 23,059 protein-coding genes. Additional members of the genus are now also been sequenced including weedy amaranths, other grain amaranths, and their putative progenitors.
Publisher: Springer Nature
ISBN: 3030723658
Category : Science
Languages : en
Pages : 181
Book Description
This book describes the development of genetic resources in amaranths, with a major focus on genomics, reverse, and forward genetics tools and strategies that have been developed for crop improvement. Amaranth is an ancient crop native to the New World. Interest in amaranths is being renewed, due to their adaptability, stress tolerance, and nutritional value. There are about 65 species in the genus, including Amaranthus caudatus L., A. cruentus L., and A. hypochondriacus L., which are primarily grown as protein-rich grains or pseudocereals. The genus also includes major noxious weeds (e.g., A. palmeri). The amaranths are within the Caryophyllales order and thus many species (e.g., A. tricolor) produce red (betacyanin) or yellow (betaxanthin) betalain pigments, which are chemically distinct from the anthocyanins responsible for red pigmentation in other plants. A. hypochondriacus, which shows disomic inheritance (2n = 32; n= 466 Mb), has been sequenced and annotated with 23,059 protein-coding genes. Additional members of the genus are now also been sequenced including weedy amaranths, other grain amaranths, and their putative progenitors.
Genetic Mapping and DNA Sequencing
Author: Terry Speed
Publisher: Springer Science & Business Media
ISBN: 1461207517
Category : Mathematics
Languages : en
Pages : 229
Book Description
Genetics mapping, physical mapping and DNA sequencing are the three key components of the human and other genome projects. Statistics, mathematics and computing play important roles in all three, as well as in the uses to which the mapping and sequencing data are put. This volume edited by key researchers Mike Waterman and Terry Speed reviews recent progress in the area, with an emphasis on the theory and application of genetic mapping.
Publisher: Springer Science & Business Media
ISBN: 1461207517
Category : Mathematics
Languages : en
Pages : 229
Book Description
Genetics mapping, physical mapping and DNA sequencing are the three key components of the human and other genome projects. Statistics, mathematics and computing play important roles in all three, as well as in the uses to which the mapping and sequencing data are put. This volume edited by key researchers Mike Waterman and Terry Speed reviews recent progress in the area, with an emphasis on the theory and application of genetic mapping.
The $1,000 Genome
Author: Kevin Davies
Publisher: Simon and Schuster
ISBN: 1416570187
Category : Science
Languages : en
Pages : 354
Book Description
In this essential guide to the brave new future, Dr. Kevin Davies, author of Cracking the Genome, reveals the masterful ingenuity that transformed the process of decoding DNA and vividly brings the extraordinary drama of the grand scientific achievement to life. In 2000, President Bill Clinton signaled the completion of the Human Genome Project at a cost in excess of $2 billion. A decade later, the price for any of us to order our own personal genome sequence—a comprehensive map of the 3 billion letters in our DNA—had already dropped to just $1,000. Dozens of men and women—scientists, entrepreneurs, celebrities, and patients—have already been sequenced, pioneering a bold new era of personalized genomic medicine. The $1,000 genome has long been considered the tipping point that would open the floodgates to this revolution. How has this astonishing achievement been accomplished? To research the story of this unfolding revolution, critically acclaimed science writer Kevin Davies traveled to the leading centers and interviewed the entrepreneurs and pioneers in the race to achieve the $1,000 genome. Davies also profiles the future of genomic medicine and thoughtfully explores the many pressing issues raised by the tidal wave of personal genetic information.
Publisher: Simon and Schuster
ISBN: 1416570187
Category : Science
Languages : en
Pages : 354
Book Description
In this essential guide to the brave new future, Dr. Kevin Davies, author of Cracking the Genome, reveals the masterful ingenuity that transformed the process of decoding DNA and vividly brings the extraordinary drama of the grand scientific achievement to life. In 2000, President Bill Clinton signaled the completion of the Human Genome Project at a cost in excess of $2 billion. A decade later, the price for any of us to order our own personal genome sequence—a comprehensive map of the 3 billion letters in our DNA—had already dropped to just $1,000. Dozens of men and women—scientists, entrepreneurs, celebrities, and patients—have already been sequenced, pioneering a bold new era of personalized genomic medicine. The $1,000 genome has long been considered the tipping point that would open the floodgates to this revolution. How has this astonishing achievement been accomplished? To research the story of this unfolding revolution, critically acclaimed science writer Kevin Davies traveled to the leading centers and interviewed the entrepreneurs and pioneers in the race to achieve the $1,000 genome. Davies also profiles the future of genomic medicine and thoughtfully explores the many pressing issues raised by the tidal wave of personal genetic information.
Frontiers of Engineering
Author: National Academy of Engineering
Publisher: National Academies Press
ISBN: 0309073197
Category : Technology & Engineering
Languages : en
Pages : 133
Book Description
In 1995 the National Academy of Engineering (NAE) initiated the Frontiers of Engineering Symposium program, which every year brings together 100 of the nation's future engineering leaders to learn about cutting-edge research and technical work in different engineering fields. On September 14-16, 2000, the National Academy of Engineering held its sixth Frontiers of Engineering Symposium at the Academies' Beckman Center in Irvine, California. Symposium speakers were asked to prepare extended summaries of their presentations, and it is those papers that are contained here. The intent of this book, and of the five that precede it in the series, is to describe the content and underpinning philosophy of this unique meeting and to highlight some of the exciting developments in engineering today.
Publisher: National Academies Press
ISBN: 0309073197
Category : Technology & Engineering
Languages : en
Pages : 133
Book Description
In 1995 the National Academy of Engineering (NAE) initiated the Frontiers of Engineering Symposium program, which every year brings together 100 of the nation's future engineering leaders to learn about cutting-edge research and technical work in different engineering fields. On September 14-16, 2000, the National Academy of Engineering held its sixth Frontiers of Engineering Symposium at the Academies' Beckman Center in Irvine, California. Symposium speakers were asked to prepare extended summaries of their presentations, and it is those papers that are contained here. The intent of this book, and of the five that precede it in the series, is to describe the content and underpinning philosophy of this unique meeting and to highlight some of the exciting developments in engineering today.
Computational Genomics with R
Author: Altuna Akalin
Publisher: CRC Press
ISBN: 1498781861
Category : Mathematics
Languages : en
Pages : 463
Book Description
Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015.
Publisher: CRC Press
ISBN: 1498781861
Category : Mathematics
Languages : en
Pages : 463
Book Description
Computational Genomics with R provides a starting point for beginners in genomic data analysis and also guides more advanced practitioners to sophisticated data analysis techniques in genomics. The book covers topics from R programming, to machine learning and statistics, to the latest genomic data analysis techniques. The text provides accessible information and explanations, always with the genomics context in the background. This also contains practical and well-documented examples in R so readers can analyze their data by simply reusing the code presented. As the field of computational genomics is interdisciplinary, it requires different starting points for people with different backgrounds. For example, a biologist might skip sections on basic genome biology and start with R programming, whereas a computer scientist might want to start with genome biology. After reading: You will have the basics of R and be able to dive right into specialized uses of R for computational genomics such as using Bioconductor packages. You will be familiar with statistics, supervised and unsupervised learning techniques that are important in data modeling, and exploratory analysis of high-dimensional data. You will understand genomic intervals and operations on them that are used for tasks such as aligned read counting and genomic feature annotation. You will know the basics of processing and quality checking high-throughput sequencing data. You will be able to do sequence analysis, such as calculating GC content for parts of a genome or finding transcription factor binding sites. You will know about visualization techniques used in genomics, such as heatmaps, meta-gene plots, and genomic track visualization. You will be familiar with analysis of different high-throughput sequencing data sets, such as RNA-seq, ChIP-seq, and BS-seq. You will know basic techniques for integrating and interpreting multi-omics datasets. Altuna Akalin is a group leader and head of the Bioinformatics and Omics Data Science Platform at the Berlin Institute of Medical Systems Biology, Max Delbrück Center, Berlin. He has been developing computational methods for analyzing and integrating large-scale genomics data sets since 2002. He has published an extensive body of work in this area. The framework for this book grew out of the yearly computational genomics courses he has been organizing and teaching since 2015.