Genetic and Ecophysiological Dissection of Tolerance to Drought and Heat Stress in Bread Wheat

Genetic and Ecophysiological Dissection of Tolerance to Drought and Heat Stress in Bread Wheat PDF Author: Bruno Bouffier
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
A stagnation of wheat yield was reported in France and other countries worldwide since the 1990's, which incriminated mainly drought and heat stress. Improving the European wheat tolerance to them is of first importance. This study aimed to investigate the genetic determinism of the tolerance to such stresses. Three CIMMYT bread wheat populations combining complementary heat and drought adaptive habits were grown in Northern Mexico under irrigated, drought and heat-irrigated treatments from 2011 to 2013. The trial network comprised 15 trials and both physiological and agronomic traits were scored. First, an environmental characterization methodology was developed and resulted in the identification of six main environmental scenarios in the network. A representative environmental covariate was extracted from each of them. Then, a factorial regression model leaded to the dissection of the genotype-by-environment interaction and highlighted differential stress sensitivity of the germplasm. Finally, a multi-environmental QTL detection resulted in the discovery of genomic regions involved in the control of both physiological and agronomic traits and the study of their sensitivity to the environment. From the environmental characterization to the QTL detection, this study resulted in the development of a tool for breeders which may enable the evaluation of the potential of any genotypes in front of a range of environment, but also the identification of genomic regions involved in the control of the tolerance to drought and heat stress in bread wheat. This may help in improving the tolerance of the European bread wheat germplasm to drought and heat stress.

Genetic and Ecophysiological Dissection of Tolerance to Drought and Heat Stress in Bread Wheat

Genetic and Ecophysiological Dissection of Tolerance to Drought and Heat Stress in Bread Wheat PDF Author: Bruno Bouffier
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
A stagnation of wheat yield was reported in France and other countries worldwide since the 1990's, which incriminated mainly drought and heat stress. Improving the European wheat tolerance to them is of first importance. This study aimed to investigate the genetic determinism of the tolerance to such stresses. Three CIMMYT bread wheat populations combining complementary heat and drought adaptive habits were grown in Northern Mexico under irrigated, drought and heat-irrigated treatments from 2011 to 2013. The trial network comprised 15 trials and both physiological and agronomic traits were scored. First, an environmental characterization methodology was developed and resulted in the identification of six main environmental scenarios in the network. A representative environmental covariate was extracted from each of them. Then, a factorial regression model leaded to the dissection of the genotype-by-environment interaction and highlighted differential stress sensitivity of the germplasm. Finally, a multi-environmental QTL detection resulted in the discovery of genomic regions involved in the control of both physiological and agronomic traits and the study of their sensitivity to the environment. From the environmental characterization to the QTL detection, this study resulted in the development of a tool for breeders which may enable the evaluation of the potential of any genotypes in front of a range of environment, but also the identification of genomic regions involved in the control of the tolerance to drought and heat stress in bread wheat. This may help in improving the tolerance of the European bread wheat germplasm to drought and heat stress.

A Genetic Dissection of Drought and Heat Tolerance Related Traits in Bread Wheat (Triticum Aestivum L.)

A Genetic Dissection of Drought and Heat Tolerance Related Traits in Bread Wheat (Triticum Aestivum L.) PDF Author: Dion Bennett
Publisher:
ISBN:
Category : Plants
Languages : en
Pages : 280

Get Book Here

Book Description
This study was conducted with the aim of improving our understanding of the genetic basis of the superior grain yield of an elite bread wheat breeding line, RAC875, under drought and heat stressed Mediterranean-type climates in southern Australia. Here, these abiotic stresses present a significant barrier to production. Kukri is a locally adapted variety which achieves acceptable grain yield under more favourable conditions, but relatively low grain yields under severe stress. A cross between the two lines resulted in an F1 derived doubled haploid population consisting of 368 individuals. The population was initially used for the genetic dissection of time to ear emergence and flag leaf glaucousness, with the latter trait hypothesised to explain a significant proportion of RAC875's relative drought and heat tolerance. Whilst parents of the population achieved similar time to ear emergence, segregation for Ppd-B1 and Ppd-D1a created large variation for this trait within the population. Two novel minor loci were detected for time to ear emergence (Q.Eet.aww-1A and Q.Zad.aww-4A), in addition to another eight known, minor loci. Five novel loci were detected for flag leaf glaucousness (Q.W.aww-3A, Q.W.aww-3B, Q.W.aww-3D, Q.W.aww-4D and Q.W.aww-5B), with one in particular (Q.W.aww-3A) accounting for up to 52 percent of the genetic variance for this trait. Sixteen field experiments were sown across southern Australia between 2006 and 2010, where average site grain yields ranged from 314 to 5275 kg ha−1. Kernels per square metre was the trait most correlated with grain yield, while spikelet fertility, which had a significant positive correlation with grains per square metre in all experiments and the subsequently derived environment clusters, was also related to grain yield. Nine loci were detected for grain yield independent of time to ear emergence and plant height. Five of these loci co-located with loci for kernels per square metre and only one of these nine loci were associated with any of the loci for flag leaf glaucousness and this genetic effect was opposite (i.e. Kukri allele resulting in large glaucousness value and lower grain yield). The RAC875 allele at QTL on chromosomes 1B and 7A (Q.Yld.aww-1B and Q.Yld.aww-7A-2) was associated with greater grain yield, kernels per spikelet and kernels per square metre. These two loci were detected in environment clusters where heat stress was a differentiating factor and it was concluded that these may therefore be associated with heat stress tolerance. Another QTL of large effect was consistently detected on chromosome 6A (Q.Tkw.aww-6A), with the RAC875 allele positively affecting grain size, flag leaf width and stem water soluble carbohydrate content but resulting in lower kernels per spikelet and therefore kernels per square metre. Experiments were also sown to assess the performance of the population in north-west Mexico under well watered, high yield potential conditions, as well as drip irrigated drought treatment and late planted but well watered conditions to expose the experiments to heat stress. This resulted in three very distinctive treatments and subsequently detected different genetic regions controlling grain yield. Two distinct QTL were detected for grain yield and canopy temperature on chromosome 3B, under irrigated (Q.Yld.aww-3B-1) and irrigated, drought and heat stressed treatments (Q.Yld.aww-3B-2). The latter QTL accounted for up to 22 percent of the genetic variance for grain yield and 20 percent of the genetic variance for canopy temperature under the heat stress treatment. However, all three treatments failed to detect any major QTL of common effect to southern Australia. This study highlighted the complex genetic basis of grain yield and physical grain quality in drought and heat stressed conditions, as well as the importance of conducting QTL dissection in the target environment. However, key loci detected offer potential for marker development and deployment of marker assisted selection within wheat breeding programmes targeting southern Australia. In the longer term, this should help improve the rate of genetic gain for grain yield, increasing production by growers in the Mediterranean type climate of southern Australia.

Genetic Diversity and Heat Stress Tolerance Studies on Bread Wheat (Tritivum Aestivum L.em. Thell) [With CD Copy]

Genetic Diversity and Heat Stress Tolerance Studies on Bread Wheat (Tritivum Aestivum L.em. Thell) [With CD Copy] PDF Author: Rutuparna Pati
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Wheat Landraces

Wheat Landraces PDF Author: Nusret Zencirci
Publisher: Springer Nature
ISBN: 3030773884
Category : Technology & Engineering
Languages : en
Pages : 268

Get Book Here

Book Description
Landraces possess a very large genetic base in population structure and are dynamic populations of cultivated plants with historical origin, distinct identity, and without any formal crop improvement. They are often genetically diverse, locally adapted, and associated with traditional farming systems. Resistance genes to biotic and abiotic stress factors, which are especially diversified in landraces, are of great interest to plant breeders, faced with global climate challenge. In addition, gene pools made of different landraces grown in different ecological conditions can be used for wheat breeding to enhance quality; yield and other desirable agricultural parameters. An estimated 75% of the genetic diversity of crop plants was lost in the last century due to the replacement of high yielding modern varieties. There is, thus, an urgent need to preserve existing species, not only for posterity but also as a means to secure food supply for a rising world population. In this book, we provide an overview of wheat landraces with special attention to genetic diversities, conservation, and utilization.

Abiotic Stress Tolerance from the Tertiary Gene Pool of Common Wheat

Abiotic Stress Tolerance from the Tertiary Gene Pool of Common Wheat PDF Author: Andrew Justin Green
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Heat and drought stress are two of the most significant abiotic stresses limiting wheat production in the Great Plains and worldwide. Introgression of novel tolerance genes from wild relatives is a strategy which presents promise. This study examined both heat and drought tolerance from the tetraploid species Aegilops geniculata (U[superscript g]U[superscript g]M[superscript g]M[superscript g]). Additional screening for heat tolerance was conducted with the US genome species Aegilops peregrina (Hack) and Aegilops kotschyi (Boiss). A comprehensive screening system for drought tolerance was also constructed to evaluate wheat and its wild relatives. Previous reports suggested that Ae. geniculata accession TA2899 was moderately tolerant to heat stress. It had also previously been used to develop a full set of wheat-Ae. geniculata chromosome addition lines in a Chinese Spring background. To identify the chromosome(s) carrying the heat tolerance, all addition lines, as well as wheat check genotypes, were screened for post-anthesis heat tolerance in two growth chamber experiments. No chromosome addition lines were significantly different (p

Proceedings of the 11th International Wheat Genetics Symposium, 24-29 August 2008, Brisbane, Qld., Australia

Proceedings of the 11th International Wheat Genetics Symposium, 24-29 August 2008, Brisbane, Qld., Australia PDF Author: Rudi Appels
Publisher: Sydney University Press
ISBN: 1920899081
Category : Science
Languages : en
Pages : 349

Get Book Here

Book Description
The papers herein are volume 1 of the proceedings of the 11th International Wheat Genetics Symposium, held in Brisbane, Australia, in 2008. The series presents the science of the genetic sciences applied to bread and durum wheats and other species.

Abiotic Stress-Mediated Sensing and Signaling in Plants: An Omics Perspective

Abiotic Stress-Mediated Sensing and Signaling in Plants: An Omics Perspective PDF Author: Sajad Majeed Zargar
Publisher: Springer
ISBN: 9811074798
Category : Science
Languages : en
Pages : 358

Get Book Here

Book Description
The natural environment for plants is composed of a complex set of abiotic and biotic stresses; plant responses to these stresses are equally complex. Systems biology allows us to identify regulatory hubs in complex networks. It also examines the molecular “parts” (transcripts, proteins and metabolites) of an organism and attempts to combine them into functional networks or models that effectively describe and predict the dynamic activities of that organism in different environments. This book focuses on research advances regarding plant responses to abiotic stresses, from the physiological level to the molecular level. It highlights new insights gained from the integration of omics datasets and identifies remaining gaps in our knowledge, outlining additional focus areas for future crop improvement research. Plants have evolved a wide range of mechanisms for coping with various abiotic stresses. In many crop plants, the molecular mechanisms involved in a single type of stress tolerance have since been identified; however, in order to arrive at a holistic understanding of major and common events concerning abiotic stresses, the signaling pathways involved must also be elucidated. To date several molecules, like transcription factors and kinases, have been identified as promising candidates that are involved in crosstalk between stress signalling pathways. However, there is a need to better understand the tolerance mechanisms for different abiotic stresses by thoroughly grasping the signalling and sensing mechanisms involved. Accordingly, this book covers a range of topics, including the impacts of different abiotic stresses on plants, the molecular mechanisms leading to tolerance for different abiotic stresses, signaling cascades revealing cross-talk among various abiotic stresses, and elucidation of major candidate molecules that may provide abiotic stress tolerance in plants.

Identification and Characterization of Contrasting Genotypes/Cultivars to Discover Novel Players in Crop Responses to Abiotic/Biotic Stresses

Identification and Characterization of Contrasting Genotypes/Cultivars to Discover Novel Players in Crop Responses to Abiotic/Biotic Stresses PDF Author: Raul Antonio Sperotto
Publisher: Frontiers Media SA
ISBN: 2889740099
Category : Science
Languages : en
Pages : 739

Get Book Here

Book Description


Plant Breeding for Water-Limited Environments

Plant Breeding for Water-Limited Environments PDF Author: Abraham Blum
Publisher: Springer Science & Business Media
ISBN: 1441974911
Category : Science
Languages : en
Pages : 267

Get Book Here

Book Description
This volume will be the only existing single-authored book offering a science-based breeder’s manual directed at breeding for water-limited environments. Plant breeding is characterized by the need to integrate information from diverse disciplines towards the development and delivery of a product defines as a new cultivar. Conventional breeding draws information from disciplines such as genetics, plant physiology, plant pathology, entomology, food technology and statistics. Plant breeding for water-limited environments and the development of drought resistant crop cultivars is considered as one of the more difficult areas in plant breeding while at the same time it is becoming a very pressing issue. This volume is unique and timely in that it develops realistic solutions and protocols towards the breeding of drought resistant cultivars by integrating knowledge from environmental science, plant physiology, genetics and molecular biology.

Crop Stress and its Management: Perspectives and Strategies

Crop Stress and its Management: Perspectives and Strategies PDF Author: B. Venkateswarlu
Publisher: Springer Science & Business Media
ISBN: 9400722206
Category : Technology & Engineering
Languages : en
Pages : 617

Get Book Here

Book Description
Crops experience an assortment of environmental stresses which include abiotic viz., drought, water logging, salinity, extremes of temperature, high variability in radiation, subtle but perceptible changes in atmospheric gases and biotic viz., insects, birds, other pests, weeds, pathogens (viruses and other microbes). The ability to tolerate or adapt and overwinter by effectively countering these stresses is a very multifaceted phenomenon. In addition, the inability to do so which renders the crops susceptible is again the result of various exogenous and endogenous interactions in the ecosystem. Both biotic and abiotic stresses occur at various stages of plant development and frequently more than one stress concurrently affects the crop. Stresses result in both universal and definite effects on plant growth and development. One of the imposing tasks for the crop researchers globally is to distinguish and to diminish effects of these stress factors on the performance of crop plants, especially with respect to yield and quality of harvested products. This is of special significance in view of the impending climate change, with complex consequences for economically profitable and ecologically and environmentally sound global agriculture. The challenge at the hands of the crop scientist in such a scenario is to promote a competitive and multifunctional agriculture, leading to the production of highly nourishing, healthy and secure food and animal feed as well as raw materials for a wide variety of industrial applications. In order to successfully meet this challenge researchers have to understand the various aspects of these stresses in view of the current development from molecules to ecosystems. The book will focus on broad research areas in relation to these stresses which are in the forefront in contemporary crop stress research.