Author: Randy L. Haupt
Publisher: John Wiley & Sons
ISBN: 0470106271
Category : Science
Languages : en
Pages : 317
Book Description
A thorough and insightful introduction to using genetic algorithms to optimize electromagnetic systems Genetic Algorithms in Electromagnetics focuses on optimizing the objective function when a computer algorithm, analytical model, or experimental result describes the performance of an electromagnetic system. It offers expert guidance to optimizing electromagnetic systems using genetic algorithms (GA), which have proven to be tenacious in finding optimal results where traditional techniques fail. Genetic Algorithms in Electromagnetics begins with an introduction to optimization and several commonly used numerical optimization routines, and goes on to feature: Introductions to GA in both binary and continuous variable forms, complete with examples of MATLAB(r) commands Two step-by-step examples of optimizing antenna arrays as well as a comprehensive overview of applications of GA to antenna array design problems Coverage of GA as an adaptive algorithm, including adaptive and smart arrays as well as adaptive reflectors and crossed dipoles Explanations of the optimization of several different wire antennas, starting with the famous "crooked monopole" How to optimize horn, reflector, and microstrip patch antennas, which require significantly more computing power than wire antennas Coverage of GA optimization of scattering, including scattering from frequency selective surfaces and electromagnetic band gap materials Ideas on operator and parameter selection for a GA Detailed explanations of particle swarm optimization and multiple objective optimization An appendix of MATLAB code for experimentation
Genetic Algorithms in Electromagnetics
Author: Randy L. Haupt
Publisher: John Wiley & Sons
ISBN: 0470106271
Category : Science
Languages : en
Pages : 317
Book Description
A thorough and insightful introduction to using genetic algorithms to optimize electromagnetic systems Genetic Algorithms in Electromagnetics focuses on optimizing the objective function when a computer algorithm, analytical model, or experimental result describes the performance of an electromagnetic system. It offers expert guidance to optimizing electromagnetic systems using genetic algorithms (GA), which have proven to be tenacious in finding optimal results where traditional techniques fail. Genetic Algorithms in Electromagnetics begins with an introduction to optimization and several commonly used numerical optimization routines, and goes on to feature: Introductions to GA in both binary and continuous variable forms, complete with examples of MATLAB(r) commands Two step-by-step examples of optimizing antenna arrays as well as a comprehensive overview of applications of GA to antenna array design problems Coverage of GA as an adaptive algorithm, including adaptive and smart arrays as well as adaptive reflectors and crossed dipoles Explanations of the optimization of several different wire antennas, starting with the famous "crooked monopole" How to optimize horn, reflector, and microstrip patch antennas, which require significantly more computing power than wire antennas Coverage of GA optimization of scattering, including scattering from frequency selective surfaces and electromagnetic band gap materials Ideas on operator and parameter selection for a GA Detailed explanations of particle swarm optimization and multiple objective optimization An appendix of MATLAB code for experimentation
Publisher: John Wiley & Sons
ISBN: 0470106271
Category : Science
Languages : en
Pages : 317
Book Description
A thorough and insightful introduction to using genetic algorithms to optimize electromagnetic systems Genetic Algorithms in Electromagnetics focuses on optimizing the objective function when a computer algorithm, analytical model, or experimental result describes the performance of an electromagnetic system. It offers expert guidance to optimizing electromagnetic systems using genetic algorithms (GA), which have proven to be tenacious in finding optimal results where traditional techniques fail. Genetic Algorithms in Electromagnetics begins with an introduction to optimization and several commonly used numerical optimization routines, and goes on to feature: Introductions to GA in both binary and continuous variable forms, complete with examples of MATLAB(r) commands Two step-by-step examples of optimizing antenna arrays as well as a comprehensive overview of applications of GA to antenna array design problems Coverage of GA as an adaptive algorithm, including adaptive and smart arrays as well as adaptive reflectors and crossed dipoles Explanations of the optimization of several different wire antennas, starting with the famous "crooked monopole" How to optimize horn, reflector, and microstrip patch antennas, which require significantly more computing power than wire antennas Coverage of GA optimization of scattering, including scattering from frequency selective surfaces and electromagnetic band gap materials Ideas on operator and parameter selection for a GA Detailed explanations of particle swarm optimization and multiple objective optimization An appendix of MATLAB code for experimentation
Electromagnetic Optimization by Genetic Algorithms
Author: Yahya Rahmat-Samii
Publisher: Wiley-Interscience
ISBN:
Category : Science
Languages : en
Pages : 522
Book Description
Authoritative coverage of a revolutionary technique for overcoming problems in electromagnetic design Genetic algorithms are stochastic search procedures modeled on the Darwinian concepts of natural selection and evolution. The machinery of genetic algorithms utilizes an optimization methodology that allows a global search of the cost surface via statistical random processes dictated by the Darwinian evolutionary concept. These easily programmed and readily implemented procedures robustly locate extrema of highly multimodal functions and therefore are particularly well suited to finding solutions to a broad range of electromagnetic optimization problems. Electromagnetic Optimization by Genetic Algorithms is the first book devoted exclusively to the application of genetic algorithms to electromagnetic device design. Compiled by two highly competent and well-respected members of the electromagnetics community, this book describes numerous applications of genetic algorithms to the design and optimization of various low- and high-frequency electromagnetic components. Special features include: * Introduction by David E. Goldberg, "A Meditation on the Application of Genetic Algorithms" * Design of linear and planar arrays using genetic algorithms * Application of genetic algorithms to the design of broadband, wire, and integrated antennas * Genetic algorithm-driven design of dielectric gratings and frequency-selective surfaces * Synthesis of magnetostatic devices using genetic algorithms * Application of genetic algorithms to multiobjective electromagnetic backscattering optimization * A comprehensive list of the up-to-date references applicable to electromagnetic design problems Supplemented with more than 250 illustrations, Electromagnetic Optimization by Genetic Algorithms is a powerful resource for electrical engineers interested in modern electromagnetic designs and an indispensable reference for university researchers.
Publisher: Wiley-Interscience
ISBN:
Category : Science
Languages : en
Pages : 522
Book Description
Authoritative coverage of a revolutionary technique for overcoming problems in electromagnetic design Genetic algorithms are stochastic search procedures modeled on the Darwinian concepts of natural selection and evolution. The machinery of genetic algorithms utilizes an optimization methodology that allows a global search of the cost surface via statistical random processes dictated by the Darwinian evolutionary concept. These easily programmed and readily implemented procedures robustly locate extrema of highly multimodal functions and therefore are particularly well suited to finding solutions to a broad range of electromagnetic optimization problems. Electromagnetic Optimization by Genetic Algorithms is the first book devoted exclusively to the application of genetic algorithms to electromagnetic device design. Compiled by two highly competent and well-respected members of the electromagnetics community, this book describes numerous applications of genetic algorithms to the design and optimization of various low- and high-frequency electromagnetic components. Special features include: * Introduction by David E. Goldberg, "A Meditation on the Application of Genetic Algorithms" * Design of linear and planar arrays using genetic algorithms * Application of genetic algorithms to the design of broadband, wire, and integrated antennas * Genetic algorithm-driven design of dielectric gratings and frequency-selective surfaces * Synthesis of magnetostatic devices using genetic algorithms * Application of genetic algorithms to multiobjective electromagnetic backscattering optimization * A comprehensive list of the up-to-date references applicable to electromagnetic design problems Supplemented with more than 250 illustrations, Electromagnetic Optimization by Genetic Algorithms is a powerful resource for electrical engineers interested in modern electromagnetic designs and an indispensable reference for university researchers.
Genetic Algorithms in Engineering and Computer Science
Author: G. Winter
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 486
Book Description
Genetic Algorithms in Engineering and Computer Science Edited by G. Winter University of Las Palmas, Canary Islands, Spain J. Périaux Dassault Aviation, Saint Cloud, France M. Galán P. Cuesta University of Las Palmas, Canary Islands, Spain This attractive book alerts us to the existence of evolution based software — Genetic Algorithms and Evolution Strategies—used for the study of complex systems and difficult optimization problems unresolved until now. Evolution algorithms are artificial intelligence techniques which mimic nature according to the "survival of the fittest" (Darwin’s principle). They randomly encode physical (quantitative or qualitative) variables via digital DNA inside computers and are known for their robustness to better explore large search spaces and find near-global optima than traditional optimization methods. The objectives of this volume are two-fold: to present a compendium of state-of-the-art lectures delivered by recognized experts in the field on theoretical, numerical and applied aspects of Genetic Algorithms for the computational treatment of continuous, discrete and combinatorial optimization problems. to provide a bridge between Artificial Intelligence and Scientific Computing in order to increase the performance of evolution programs for solving real life problems. Fluid dynamics, structure mechanics, electromagnetics, automation control, resource optimization, image processing and economics are the featured multi-disciplinary areas among others in Engineering and Applied Sciences where evolution works impressively well. This volume is aimed at graduate students, applied mathematicians, computer scientists, researchers and engineers who face challenging design optimization problems in Industry. They will enjoy implementing new programs using these evolution techniques which have been experimented with by Nature for 3.5 billion years.
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 486
Book Description
Genetic Algorithms in Engineering and Computer Science Edited by G. Winter University of Las Palmas, Canary Islands, Spain J. Périaux Dassault Aviation, Saint Cloud, France M. Galán P. Cuesta University of Las Palmas, Canary Islands, Spain This attractive book alerts us to the existence of evolution based software — Genetic Algorithms and Evolution Strategies—used for the study of complex systems and difficult optimization problems unresolved until now. Evolution algorithms are artificial intelligence techniques which mimic nature according to the "survival of the fittest" (Darwin’s principle). They randomly encode physical (quantitative or qualitative) variables via digital DNA inside computers and are known for their robustness to better explore large search spaces and find near-global optima than traditional optimization methods. The objectives of this volume are two-fold: to present a compendium of state-of-the-art lectures delivered by recognized experts in the field on theoretical, numerical and applied aspects of Genetic Algorithms for the computational treatment of continuous, discrete and combinatorial optimization problems. to provide a bridge between Artificial Intelligence and Scientific Computing in order to increase the performance of evolution programs for solving real life problems. Fluid dynamics, structure mechanics, electromagnetics, automation control, resource optimization, image processing and economics are the featured multi-disciplinary areas among others in Engineering and Applied Sciences where evolution works impressively well. This volume is aimed at graduate students, applied mathematicians, computer scientists, researchers and engineers who face challenging design optimization problems in Industry. They will enjoy implementing new programs using these evolution techniques which have been experimented with by Nature for 3.5 billion years.
Computer Engineering in Applied Electromagnetism
Author: Slawomir Wiak
Publisher: Springer Science & Business Media
ISBN: 1402031696
Category : Technology & Engineering
Languages : en
Pages : 377
Book Description
Computer Engineering in Applied Electromagnetism contains papers which were presented at the International Symposium on Electromagnetic Fields in Electrical Engineering, held in Maribor, Slovenia, 18-20 September 2003. It consists of three parts, Computational Techniques, Electromagnetic Engineering, and Special Applications. The contributions selected for the book cover a wide spectrum of theory and practice, being simultaneously of high theoretical level and deeply rooted in engineering problems. Thus, this volume touches on what is of key importance in electromagnetism.
Publisher: Springer Science & Business Media
ISBN: 1402031696
Category : Technology & Engineering
Languages : en
Pages : 377
Book Description
Computer Engineering in Applied Electromagnetism contains papers which were presented at the International Symposium on Electromagnetic Fields in Electrical Engineering, held in Maribor, Slovenia, 18-20 September 2003. It consists of three parts, Computational Techniques, Electromagnetic Engineering, and Special Applications. The contributions selected for the book cover a wide spectrum of theory and practice, being simultaneously of high theoretical level and deeply rooted in engineering problems. Thus, this volume touches on what is of key importance in electromagnetism.
Emerging Evolutionary Algorithms for Antennas and Wireless Communications
Author: Sotirios K. Goudos
Publisher: IET
ISBN: 1785615521
Category : Technology & Engineering
Languages : en
Pages : 341
Book Description
This book presents some of the emerging evolutionary algorithms (EAs) and their variants. It presents design cases of different EAs applied to popular design problems in antennas and wireless communications. The book contains both cases of single and multi-objective optimization.
Publisher: IET
ISBN: 1785615521
Category : Technology & Engineering
Languages : en
Pages : 341
Book Description
This book presents some of the emerging evolutionary algorithms (EAs) and their variants. It presents design cases of different EAs applied to popular design problems in antennas and wireless communications. The book contains both cases of single and multi-objective optimization.
Practical Genetic Algorithms
Author: Randy L. Haupt
Publisher: John Wiley & Sons
ISBN: 0471671754
Category : Technology & Engineering
Languages : en
Pages : 273
Book Description
* This book deals with the fundamentals of genetic algorithms and their applications in a variety of different areas of engineering and science * Most significant update to the second edition is the MATLAB codes that accompany the text * Provides a thorough discussion of hybrid genetic algorithms * Features more examples than first edition
Publisher: John Wiley & Sons
ISBN: 0471671754
Category : Technology & Engineering
Languages : en
Pages : 273
Book Description
* This book deals with the fundamentals of genetic algorithms and their applications in a variety of different areas of engineering and science * Most significant update to the second edition is the MATLAB codes that accompany the text * Provides a thorough discussion of hybrid genetic algorithms * Features more examples than first edition
Handbook of Engineering Electromagnetics
Author: Rajeev Bansal
Publisher: CRC Press
ISBN: 0203026020
Category : Science
Languages : en
Pages : 720
Book Description
Engineers do not have the time to wade through rigorously theoretical books when trying to solve a problem. Beginners lack the expertise required to understand highly specialized treatments of individual topics. This is especially problematic for a field as broad as electromagnetics, which propagates into many diverse engineering fields. The time h
Publisher: CRC Press
ISBN: 0203026020
Category : Science
Languages : en
Pages : 720
Book Description
Engineers do not have the time to wade through rigorously theoretical books when trying to solve a problem. Beginners lack the expertise required to understand highly specialized treatments of individual topics. This is especially problematic for a field as broad as electromagnetics, which propagates into many diverse engineering fields. The time h
An Introduction to Genetic Algorithms
Author: Melanie Mitchell
Publisher: MIT Press
ISBN: 9780262631853
Category : Computers
Languages : en
Pages : 226
Book Description
Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics—particularly in machine learning, scientific modeling, and artificial life—and reviews a broad span of research, including the work of Mitchell and her colleagues. The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines. An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.
Publisher: MIT Press
ISBN: 9780262631853
Category : Computers
Languages : en
Pages : 226
Book Description
Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics—particularly in machine learning, scientific modeling, and artificial life—and reviews a broad span of research, including the work of Mitchell and her colleagues. The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines. An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.
Real-World Applications of Genetic Algorithms
Author: Olympia Roeva
Publisher: BoD – Books on Demand
ISBN: 9535101463
Category : Computers
Languages : en
Pages : 379
Book Description
The book addresses some of the most recent issues, with the theoretical and methodological aspects, of evolutionary multi-objective optimization problems and the various design challenges using different hybrid intelligent approaches. Multi-objective optimization has been available for about two decades, and its application in real-world problems is continuously increasing. Furthermore, many applications function more effectively using a hybrid systems approach. The book presents hybrid techniques based on Artificial Neural Network, Fuzzy Sets, Automata Theory, other metaheuristic or classical algorithms, etc. The book examines various examples of algorithms in different real-world application domains as graph growing problem, speech synthesis, traveling salesman problem, scheduling problems, antenna design, genes design, modeling of chemical and biochemical processes etc.
Publisher: BoD – Books on Demand
ISBN: 9535101463
Category : Computers
Languages : en
Pages : 379
Book Description
The book addresses some of the most recent issues, with the theoretical and methodological aspects, of evolutionary multi-objective optimization problems and the various design challenges using different hybrid intelligent approaches. Multi-objective optimization has been available for about two decades, and its application in real-world problems is continuously increasing. Furthermore, many applications function more effectively using a hybrid systems approach. The book presents hybrid techniques based on Artificial Neural Network, Fuzzy Sets, Automata Theory, other metaheuristic or classical algorithms, etc. The book examines various examples of algorithms in different real-world application domains as graph growing problem, speech synthesis, traveling salesman problem, scheduling problems, antenna design, genes design, modeling of chemical and biochemical processes etc.
Hybrid Evolutionary Algorithms
Author: Crina Grosan
Publisher: Springer
ISBN: 3540732977
Category : Computers
Languages : en
Pages : 410
Book Description
This edited volume is targeted at presenting the latest state-of-the-art methodologies in "Hybrid Evolutionary Algorithms". The chapters deal with the theoretical and methodological aspects, as well as various applications to many real world problems from science, technology, business or commerce. Overall, the book has 14 chapters including an introductory chapter giving the fundamental definitions and some important research challenges. The contributions were selected on the basis of fundamental ideas/concepts rather than the thoroughness of techniques deployed.
Publisher: Springer
ISBN: 3540732977
Category : Computers
Languages : en
Pages : 410
Book Description
This edited volume is targeted at presenting the latest state-of-the-art methodologies in "Hybrid Evolutionary Algorithms". The chapters deal with the theoretical and methodological aspects, as well as various applications to many real world problems from science, technology, business or commerce. Overall, the book has 14 chapters including an introductory chapter giving the fundamental definitions and some important research challenges. The contributions were selected on the basis of fundamental ideas/concepts rather than the thoroughness of techniques deployed.