Author: Francisco Herrera
Publisher: Physica
ISBN:
Category : Business & Economics
Languages : en
Pages : 736
Book Description
Soft Computing is concerned with modes of computing in which precision is treated for tractability, robustness and ease of implementation, and it contains Fuzzy Sets and Genetic Algorithms among its components. Each of them have different advantages to deal with nonlinearity or explicit knowledge expression, but learning capability, as well as global and local search approaches provided by Genetic Algorithms are remarkable. This book will be revealing for all those interested in new developments and practical applications in the interface between Soft Computing and Genetic Algorithms.
Genetic Algorithms and Soft Computing
Author: Francisco Herrera
Publisher: Physica
ISBN:
Category : Business & Economics
Languages : en
Pages : 736
Book Description
Soft Computing is concerned with modes of computing in which precision is treated for tractability, robustness and ease of implementation, and it contains Fuzzy Sets and Genetic Algorithms among its components. Each of them have different advantages to deal with nonlinearity or explicit knowledge expression, but learning capability, as well as global and local search approaches provided by Genetic Algorithms are remarkable. This book will be revealing for all those interested in new developments and practical applications in the interface between Soft Computing and Genetic Algorithms.
Publisher: Physica
ISBN:
Category : Business & Economics
Languages : en
Pages : 736
Book Description
Soft Computing is concerned with modes of computing in which precision is treated for tractability, robustness and ease of implementation, and it contains Fuzzy Sets and Genetic Algorithms among its components. Each of them have different advantages to deal with nonlinearity or explicit knowledge expression, but learning capability, as well as global and local search approaches provided by Genetic Algorithms are remarkable. This book will be revealing for all those interested in new developments and practical applications in the interface between Soft Computing and Genetic Algorithms.
Genetic Algorithms and Fuzzy Logic Systems
Author: Elie Sanchez
Publisher: World Scientific
ISBN: 9789810224233
Category : Computers
Languages : en
Pages : 254
Book Description
Ever since fuzzy logic was introduced by Lotfi Zadeh in the mid-sixties and genetic algorithms by John Holland in the early seventies, these two fields widely been subjects of academic research the world over. During the last few years, they have been experiencing extremely rapid growth in the industrial world, where they have been shown to be very effective in solving real-world problems. These two substantial fields, together with neurocomputing techniques, are recognized as major parts of soft computing: a set of computing technologies already riding the waves of the next century to produce the human-centered intelligent systems of tomorrow; the collection of papers presented in this book shows the way. The book also contains an extensive bibliography on fuzzy logic and genetic algorithms.
Publisher: World Scientific
ISBN: 9789810224233
Category : Computers
Languages : en
Pages : 254
Book Description
Ever since fuzzy logic was introduced by Lotfi Zadeh in the mid-sixties and genetic algorithms by John Holland in the early seventies, these two fields widely been subjects of academic research the world over. During the last few years, they have been experiencing extremely rapid growth in the industrial world, where they have been shown to be very effective in solving real-world problems. These two substantial fields, together with neurocomputing techniques, are recognized as major parts of soft computing: a set of computing technologies already riding the waves of the next century to produce the human-centered intelligent systems of tomorrow; the collection of papers presented in this book shows the way. The book also contains an extensive bibliography on fuzzy logic and genetic algorithms.
NEURAL NETWORKS, FUZZY SYSTEMS AND EVOLUTIONARY ALGORITHMS : SYNTHESIS AND APPLICATIONS
Author: S. RAJASEKARAN
Publisher: PHI Learning Pvt. Ltd.
ISBN: 812035334X
Category : Computers
Languages : en
Pages : 574
Book Description
The second edition of this book provides a comprehensive introduction to a consortium of technologies underlying soft computing, an evolving branch of computational intelligence, which in recent years, has turned synonymous to it. The constituent technologies discussed comprise neural network (NN), fuzzy system (FS), evolutionary algorithm (EA), and a number of hybrid systems, which include classes such as neuro-fuzzy, evolutionary-fuzzy, and neuro-evolutionary systems. The hybridization of the technologies is demonstrated on architectures such as fuzzy backpropagation network (NN-FS hybrid), genetic algorithm-based backpropagation network (NN-EA hybrid), simplified fuzzy ARTMAP (NN-FS hybrid), fuzzy associative memory (NN-FS hybrid), fuzzy logic controlled genetic algorithm (EA-FS hybrid) and evolutionary extreme learning machine (NN-EA hybrid) Every architecture has been discussed in detail through illustrative examples and applications. The algorithms have been presented in pseudo-code with a step-by-step illustration of the same in problems. The applications, demonstrative of the potential of the architectures, have been chosen from diverse disciplines of science and engineering. This book, with a wealth of information that is clearly presented and illustrated by many examples and applications, is designed for use as a text for the courses in soft computing at both the senior undergraduate and first-year postgraduate levels of computer science and engineering. It should also be of interest to researchers and technologists desirous of applying soft computing technologies to their respective fields of work.
Publisher: PHI Learning Pvt. Ltd.
ISBN: 812035334X
Category : Computers
Languages : en
Pages : 574
Book Description
The second edition of this book provides a comprehensive introduction to a consortium of technologies underlying soft computing, an evolving branch of computational intelligence, which in recent years, has turned synonymous to it. The constituent technologies discussed comprise neural network (NN), fuzzy system (FS), evolutionary algorithm (EA), and a number of hybrid systems, which include classes such as neuro-fuzzy, evolutionary-fuzzy, and neuro-evolutionary systems. The hybridization of the technologies is demonstrated on architectures such as fuzzy backpropagation network (NN-FS hybrid), genetic algorithm-based backpropagation network (NN-EA hybrid), simplified fuzzy ARTMAP (NN-FS hybrid), fuzzy associative memory (NN-FS hybrid), fuzzy logic controlled genetic algorithm (EA-FS hybrid) and evolutionary extreme learning machine (NN-EA hybrid) Every architecture has been discussed in detail through illustrative examples and applications. The algorithms have been presented in pseudo-code with a step-by-step illustration of the same in problems. The applications, demonstrative of the potential of the architectures, have been chosen from diverse disciplines of science and engineering. This book, with a wealth of information that is clearly presented and illustrated by many examples and applications, is designed for use as a text for the courses in soft computing at both the senior undergraduate and first-year postgraduate levels of computer science and engineering. It should also be of interest to researchers and technologists desirous of applying soft computing technologies to their respective fields of work.
Fuzzy Rule-Based Expert Systems and Genetic Machine Learning
Author: Andreas Geyer-Schulz
Publisher: Physica
ISBN:
Category : Business & Economics
Languages : en
Pages : 460
Book Description
This book integrates fuzzy rule-languages with genetic algorithms, genetic programming, and classifier systems with the goal of obtaining fuzzy rule-based expert systems with learning capabilities. The main topics are first introduced by solving small problems, then a prototype implementation of the algorithm is explained, and last but not least the theoretical foundations are given. The second edition takes into account the rapid progress in the application of fuzzy genetic algorithms with a survey of recent developments in the field. The chapter on genetic programming has been revised. An exact uniform initialization algorithm replaces the heuristic presented in the first edition. A new method of abstraction, compound derivations, is introduced.
Publisher: Physica
ISBN:
Category : Business & Economics
Languages : en
Pages : 460
Book Description
This book integrates fuzzy rule-languages with genetic algorithms, genetic programming, and classifier systems with the goal of obtaining fuzzy rule-based expert systems with learning capabilities. The main topics are first introduced by solving small problems, then a prototype implementation of the algorithm is explained, and last but not least the theoretical foundations are given. The second edition takes into account the rapid progress in the application of fuzzy genetic algorithms with a survey of recent developments in the field. The chapter on genetic programming has been revised. An exact uniform initialization algorithm replaces the heuristic presented in the first edition. A new method of abstraction, compound derivations, is introduced.
Soft Computing
Author: Samir Roy
Publisher: Pearson Education India
ISBN: 9332514208
Category : Fuzzy logic
Languages : en
Pages : 609
Book Description
Soft computing is a branch of computer science that deals with a family of methods that imitate human intelligence. This is done with the goal of creating tools that will contain some human-like capabilities (such as learning, reasoning and decision-making). This book covers the entire gamut of soft computing, including fuzzy logic, rough sets, artificial neural networks, and various evolutionary algorithms. It offers a learner-centric approach where each new concept is introduced with carefully designed examples/instances to train the learner.
Publisher: Pearson Education India
ISBN: 9332514208
Category : Fuzzy logic
Languages : en
Pages : 609
Book Description
Soft computing is a branch of computer science that deals with a family of methods that imitate human intelligence. This is done with the goal of creating tools that will contain some human-like capabilities (such as learning, reasoning and decision-making). This book covers the entire gamut of soft computing, including fuzzy logic, rough sets, artificial neural networks, and various evolutionary algorithms. It offers a learner-centric approach where each new concept is introduced with carefully designed examples/instances to train the learner.
Representations for Genetic and Evolutionary Algorithms
Author: Franz Rothlauf
Publisher: Physica
ISBN: 3642880940
Category : Computers
Languages : en
Pages : 295
Book Description
In the field of genetic and evolutionary algorithms (GEAs), much theory and empirical study has been heaped upon operators and test problems, but problem representation has often been taken as given. This monograph breaks with this tradition and studies a number of critical elements of a theory of representations for GEAs and applies them to the empirical study of various important idealized test functions and problems of commercial import. The book considers basic concepts of representations, such as redundancy, scaling and locality and describes how GEAs'performance is influenced. Using the developed theory representations can be analyzed and designed in a theory-guided manner. The theoretical concepts are used as examples for efficiently solving integer optimization problems and network design problems. The results show that proper representations are crucial for GEAs'success.
Publisher: Physica
ISBN: 3642880940
Category : Computers
Languages : en
Pages : 295
Book Description
In the field of genetic and evolutionary algorithms (GEAs), much theory and empirical study has been heaped upon operators and test problems, but problem representation has often been taken as given. This monograph breaks with this tradition and studies a number of critical elements of a theory of representations for GEAs and applies them to the empirical study of various important idealized test functions and problems of commercial import. The book considers basic concepts of representations, such as redundancy, scaling and locality and describes how GEAs'performance is influenced. Using the developed theory representations can be analyzed and designed in a theory-guided manner. The theoretical concepts are used as examples for efficiently solving integer optimization problems and network design problems. The results show that proper representations are crucial for GEAs'success.
NEURAL NETWORKS, FUZZY LOGIC AND GENETIC ALGORITHM
Author: S. RAJASEKARAN
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120321863
Category : Computers
Languages : en
Pages : 459
Book Description
This book provides comprehensive introduction to a consortium of technologies underlying soft computing, an evolving branch of computational intelligence. The constituent technologies discussed comprise neural networks, fuzzy logic, genetic algorithms, and a number of hybrid systems which include classes such as neuro-fuzzy, fuzzy-genetic, and neuro-genetic systems. The hybridization of the technologies is demonstrated on architectures such as Fuzzy-Back-propagation Networks (NN-FL), Simplified Fuzzy ARTMAP (NN-FL), and Fuzzy Associative Memories. The book also gives an exhaustive discussion of FL-GA hybridization. Every architecture has been discussed in detail through illustrative examples and applications. The algorithms have been presented in pseudo-code with a step-by-step illustration of the same in problems. The applications, demonstrative of the potential of the architectures, have been chosen from diverse disciplines of science and engineering. This book with a wealth of information that is clearly presented and illustrated by many examples and applications is designed for use as a text for courses in soft computing at both the senior undergraduate and first-year post-graduate engineering levels. It should also be of interest to researchers and technologists desirous of applying soft computing technologies to their respective fields of work.
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8120321863
Category : Computers
Languages : en
Pages : 459
Book Description
This book provides comprehensive introduction to a consortium of technologies underlying soft computing, an evolving branch of computational intelligence. The constituent technologies discussed comprise neural networks, fuzzy logic, genetic algorithms, and a number of hybrid systems which include classes such as neuro-fuzzy, fuzzy-genetic, and neuro-genetic systems. The hybridization of the technologies is demonstrated on architectures such as Fuzzy-Back-propagation Networks (NN-FL), Simplified Fuzzy ARTMAP (NN-FL), and Fuzzy Associative Memories. The book also gives an exhaustive discussion of FL-GA hybridization. Every architecture has been discussed in detail through illustrative examples and applications. The algorithms have been presented in pseudo-code with a step-by-step illustration of the same in problems. The applications, demonstrative of the potential of the architectures, have been chosen from diverse disciplines of science and engineering. This book with a wealth of information that is clearly presented and illustrated by many examples and applications is designed for use as a text for courses in soft computing at both the senior undergraduate and first-year post-graduate engineering levels. It should also be of interest to researchers and technologists desirous of applying soft computing technologies to their respective fields of work.
The Nature of Code
Author: Daniel Shiffman
Publisher: No Starch Press
ISBN: 1718503717
Category : Computers
Languages : en
Pages : 642
Book Description
All aboard The Coding Train! This beginner-friendly creative coding tutorial is designed to grow your skills in a fun, hands-on way as you build simulations of real-world phenomena with “The Coding Train” YouTube star Daniel Shiffman. What if you could re-create the awe-inspiring flocking patterns of birds or the hypnotic dance of fireflies—with code? For over a decade, The Nature of Code has empowered countless readers to do just that, bridging the gap between creative expression and programming. This innovative guide by Daniel Shiffman, creator of the beloved Coding Train, welcomes budding and seasoned programmers alike into a world where code meets playful creativity. This JavaScript-based edition of Shiffman’s groundbreaking work gently unfolds the mysteries of the natural world, turning complex topics like genetic algorithms, physics-based simulations, and neural networks into accessible and visually stunning creations. Embark on this extraordinary adventure with projects involving: A physics engine: Simulate the push and pull of gravitational attraction. Flocking birds: Choreograph the mesmerizing dance of a flock. Branching trees: Grow lifelike and organic tree structures. Neural networks: Craft intelligent systems that learn and adapt. Cellular automata: Uncover the magic of self-organizing patterns. Evolutionary algorithms: Play witness to natural selection in your code. Shiffman’s work has transformed thousands of curious minds into creators, breaking down barriers between science, art, and technology, and inviting readers to see code not just as a tool for tasks but as a canvas for boundless creativity. Whether you’re deciphering the elegant patterns of natural phenomena or crafting your own digital ecosystems, Shiffman’s guidance is sure to inform and inspire. The Nature of Code is not just about coding; it’s about looking at the natural world in a new way and letting its wonders inspire your next creation. Dive in and discover the joy of turning code into art—all while mastering coding fundamentals along the way. NOTE: All examples are written with p5.js, a JavaScript library for creative coding, and are available on the book's website.
Publisher: No Starch Press
ISBN: 1718503717
Category : Computers
Languages : en
Pages : 642
Book Description
All aboard The Coding Train! This beginner-friendly creative coding tutorial is designed to grow your skills in a fun, hands-on way as you build simulations of real-world phenomena with “The Coding Train” YouTube star Daniel Shiffman. What if you could re-create the awe-inspiring flocking patterns of birds or the hypnotic dance of fireflies—with code? For over a decade, The Nature of Code has empowered countless readers to do just that, bridging the gap between creative expression and programming. This innovative guide by Daniel Shiffman, creator of the beloved Coding Train, welcomes budding and seasoned programmers alike into a world where code meets playful creativity. This JavaScript-based edition of Shiffman’s groundbreaking work gently unfolds the mysteries of the natural world, turning complex topics like genetic algorithms, physics-based simulations, and neural networks into accessible and visually stunning creations. Embark on this extraordinary adventure with projects involving: A physics engine: Simulate the push and pull of gravitational attraction. Flocking birds: Choreograph the mesmerizing dance of a flock. Branching trees: Grow lifelike and organic tree structures. Neural networks: Craft intelligent systems that learn and adapt. Cellular automata: Uncover the magic of self-organizing patterns. Evolutionary algorithms: Play witness to natural selection in your code. Shiffman’s work has transformed thousands of curious minds into creators, breaking down barriers between science, art, and technology, and inviting readers to see code not just as a tool for tasks but as a canvas for boundless creativity. Whether you’re deciphering the elegant patterns of natural phenomena or crafting your own digital ecosystems, Shiffman’s guidance is sure to inform and inspire. The Nature of Code is not just about coding; it’s about looking at the natural world in a new way and letting its wonders inspire your next creation. Dive in and discover the joy of turning code into art—all while mastering coding fundamentals along the way. NOTE: All examples are written with p5.js, a JavaScript library for creative coding, and are available on the book's website.
Fuzzy Logic And Soft Computing
Author: Bernadette Bouchon-meunier
Publisher: World Scientific
ISBN: 9814500089
Category : Computers
Languages : en
Pages : 509
Book Description
Soft computing is a new, emerging discipline rooted in a group of technologies that aim to exploit the tolerance for imprecision and uncertainty in achieving solutions to complex problems. The principal components of soft computing are fuzzy logic, neurocomputing, genetic algorithms and probabilistic reasoning.This volume is a collection of up-to-date articles giving a snapshot of the current state of the field. It covers the whole expanse, from theoretical foundations to applications. The contributors are among the world leaders in the field.
Publisher: World Scientific
ISBN: 9814500089
Category : Computers
Languages : en
Pages : 509
Book Description
Soft computing is a new, emerging discipline rooted in a group of technologies that aim to exploit the tolerance for imprecision and uncertainty in achieving solutions to complex problems. The principal components of soft computing are fuzzy logic, neurocomputing, genetic algorithms and probabilistic reasoning.This volume is a collection of up-to-date articles giving a snapshot of the current state of the field. It covers the whole expanse, from theoretical foundations to applications. The contributors are among the world leaders in the field.
An Introduction to Genetic Algorithms
Author: Melanie Mitchell
Publisher: MIT Press
ISBN: 9780262631853
Category : Computers
Languages : en
Pages : 226
Book Description
Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics—particularly in machine learning, scientific modeling, and artificial life—and reviews a broad span of research, including the work of Mitchell and her colleagues. The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines. An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.
Publisher: MIT Press
ISBN: 9780262631853
Category : Computers
Languages : en
Pages : 226
Book Description
Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics—particularly in machine learning, scientific modeling, and artificial life—and reviews a broad span of research, including the work of Mitchell and her colleagues. The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines. An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.