Generalized Parton Distributions and Deeply Virtual Compton Scattering in Color Glass Condensate Model

Generalized Parton Distributions and Deeply Virtual Compton Scattering in Color Glass Condensate Model PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 17

Get Book Here

Book Description
Http://dx.doi.org/10.1140/epjc/s10052-008-0655-x Within the framework of the Color Glass Condensate model, we evaluate quark and gluon Generalized Parton Distributions (GPDs) and the cross section of Deeply Virtual Compton Scattering (DVCS) in the small-$x_{B}$ region. We demonstrate that the DVCS cross section becomes independent of energy in the limit of very small $x_{B}$, which clearly indicates saturation of the DVCS cross section. Our predictions for the GPDs and the DVCS cross section at high-energies can be tested at the future Electron-Ion Collider and in ultra-peripheral nucleus-nucleus collisions at the LHC.

Generalized Parton Distributions and Deeply Virtual Compton Scattering in Color Glass Condensate Model

Generalized Parton Distributions and Deeply Virtual Compton Scattering in Color Glass Condensate Model PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 17

Get Book Here

Book Description
Http://dx.doi.org/10.1140/epjc/s10052-008-0655-x Within the framework of the Color Glass Condensate model, we evaluate quark and gluon Generalized Parton Distributions (GPDs) and the cross section of Deeply Virtual Compton Scattering (DVCS) in the small-$x_{B}$ region. We demonstrate that the DVCS cross section becomes independent of energy in the limit of very small $x_{B}$, which clearly indicates saturation of the DVCS cross section. Our predictions for the GPDs and the DVCS cross section at high-energies can be tested at the future Electron-Ion Collider and in ultra-peripheral nucleus-nucleus collisions at the LHC.

Deeply Virtual Compton Scattering at Jefferson Laboratory

Deeply Virtual Compton Scattering at Jefferson Laboratory PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The generalized parton distributions (GPDs) have emerged as a universal tool to describe hadrons in terms of their elementary constituents, the quarks and the gluons. Deeply virtual Compton scattering (DVCS) on a proton or neutron ($N$), $e N \rightarrow e' N' \gamma$, is the process more directly interpretable in terms of GPDs. The amplitudes of DVCS and Bethe-Heitler, the process where a photon is emitted by either the incident or scattered electron, can be accessed via cross-section measurements or exploiting their interference which gives rise to spin asymmetries. Spin asymmetries, cross sections and cross-section differences can be connected to different combinations of the four leading-twist GPDs (${H}$, ${E}$, ${\tilde{H}}$, ${\tilde{E}}$) for each quark flavors, depending on the observable and on the type of target. This paper gives an overview of recent experimental results obtained for DVCS at Jefferson Laboratory in the halls A and B. Several experiments have been done extracting DVCS observables over large kinematics regions. Multiple measurements with overlapping kinematic regions allow to perform a quasi-model independent extraction of the Compton form factors, which are GPDs integrals, revealing a 3D image of the nucleon.

Deeply Virtual Compton Scattering and Generalized Parton Distributions at CLAS.

Deeply Virtual Compton Scattering and Generalized Parton Distributions at CLAS. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 4

Get Book Here

Book Description
The exclusive electroproduction of real photons and mesons at high momentum transfer allows us to access the Generalized Parton Distributions (GPDs). The formalism of the GPDs provides a unified description of the hadronic structure in terms of quark and gluonic degrees of freedom. In particular, the Deeply Virtual Compton Scattering (DVCS), ep â e2p2Å, is one of the key reactions to determine the GPDs experimentally, as it is the simplest process that can be described in terms of GPDs. A dedicated experiment to study DVCS has been carried out in Hall B at Jefferson Lab. Beam-spin asymmetries, resulting from the interference of the Bethe-Heitler process and DVCS have been extracted over the widest kinematic range ever accessed for this reaction (1.2

Deeply Virtual Compton Scattering and Generalized Parton Distributions

Deeply Virtual Compton Scattering and Generalized Parton Distributions PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Theoretical calculations predict the modification of properties of vector mesons, such as a shift in their masses and/or broadening of their widths in dense nuclear matter. These effects can be related to partial restoration of chiral symmetry at high density or temperature. Photproduction of vector mesons off nuclei were performed at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS). The data were taken with a beam of tagged photons with energies up to 4 GeV on various nuclear targets. The properties of the rho vector mesons were investigated via their rare leptonic decay to e+e-. This decay channel is preferred over hadronic modes in order to eliminate final state interactions in the nuclear matter. The combinatorial background in the mass spectrum was removed by a self-normalizing mixed-event technique. The rho meson mass distributions were extracted for each of the targets. Statistically significant results regarding medium modification of the rho meson in the nuc.

Deeply Virtual Compton Scattering at Jefferson Lab

Deeply Virtual Compton Scattering at Jefferson Lab PDF Author: Frédéric Georges
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Introduced in the mid 90's, Generalized Parton Distributions (GPDs) are now a key element in the study of the nucleon internal structure. GPDs are a generalization of Form Factors and Parton Distribution Functions. They encapsulate both spatial and momentum distributions of partons inside a nucleon, allowing to perform its three-dimensional tomography. Furthermore, they allow to derive the total orbital angular momentum of quarks through the Ji sum rule, which is a crucial point to unravel the nucleon spin structure. By providing a more complete description of hadrons in terms of quarks and gluons, a deeper understanding of Quantum Chromodynamics can be reached.GPDs are experimentally accessible through deeply exclusive electro-production processes, and one of the simplest channels available is Deeply Virtual Compton Scattering (DVCS). A worldwide experimental program was started in the early 2000's to extract these GPDs. The DVCS experiment E12-06-114 performed at Jefferson Laboratory Hall A (Virginia, USA) between 2014 and 2016, is encompassed in this program. The aim of this experiment is to extract with high precision the DVCS helicity-dependent cross sections as a function of the momentum transfer Q2, for fixed values of the Bjorken variable xBj, on a proton target. The recent upgrade of the accelerator facility to 12 GeV allows to cover a larger Q2 range than in previous measurements and probe yet unexplored kinematic regions, while the polarized electron beam allows the separation of the contributions from the real and imaginary parts of the DVCS amplitude to the total cross section. In this document, a brief summary of the worldwide experimental program for the study of GPDs will be provided, followed by a description of the E12-06-114 apparatus and data analysis. Finally, the results of the unpolarized and polarized cross-section measurements are presented and compared to a few selected models.

Deeply Virtual Exclusive Processes and Generalized Parton Distributions

Deeply Virtual Exclusive Processes and Generalized Parton Distributions PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 12006

Get Book Here

Book Description
The goal of the comprehensive program in Deeply Virtual Exclusive Scattering at Jefferson Laboratory is to create transverse spatial images of quarks and gluons as a function of their longitudinal momentum fraction in the proton, the neutron, and in nuclei. These functions are the Generalized Parton Distributions (GPDs) of the target nucleus. Cross section measurements of the Deeply Virtual Compton Scattering (DVCS) reaction ep 2!ep[gamma] in Hall A support the QCD factorization of the scattering amplitude for Q^2 e"2 GeV^2. Quasi-free neutron-DVCS measurements on the Deuteron indicate sensitivity to the quark angular momentum sum rule. Fully exclusive H(e, e'p[gamma]) measurements have been made in a wide kinematic range in CLAS with polarized beam, and with both unpolarized and longitudinally polarized targets. Existing models are qualitatively consistent with the JLab data, but there is a clear need for less constrained models. Deeply virtual vector meson production is studied in CLAS. The 12 GeV upgrade will be essential for for these channels. The [rho] and [omega] channels reactions offer the prospect of flavor sensitivity to the quark GPDs, while the [phi]-production channel is dominated by the gluon distribution.

Generalized Parton Distributions

Generalized Parton Distributions PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Applications of perturbative QCD to deeply virtual Compton scattering and hard exclusive electroproduction processes require a generalization of the usual parton distributions for the case when long-distance information is accumulated in non-diagonal matrix elements of quark and gluon light-cone operators. I describe two types of nonperturbative functions parametrizing such matrix elements: double distributions and skewed parton distributions, discuss their general properties, relation to the usual parton densities and form factors, evolution equations for both types of generalized parton distributions (GPD), models for GPDs and their applications in virtual and real Compton scattering.

Deeply Virtual Compton Scattering Cross Section Measured with CLAS.

Deeply Virtual Compton Scattering Cross Section Measured with CLAS. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 6

Get Book Here

Book Description
The Generalized Parton Distributions (GPDs) provide a new description of nucleon structure in terms of its elementary constituents, the quarks and the gluons. Including and extending the information provided by the form factors and the parton distribution functions, they describe the correlation between the transverse position and the longitudinal momentum fraction of the partons in the nucleon. Deeply Virtual Compton Scattering (DVCS), the electroproduction of a real photon on a single quark in the nucleon eN --> e'N'g, is the exclusive process most directly interpretable in terms of GPDs. A dedicated experiment to study DVCS with the CLAS detector at Jefferson Lab has been carried out using a 5.9-GeV polarized electron beam and an unpolarized hydrogen target, allowing us to collect DVCS events in the widest kinematic range ever explored in the valence region : 1.0

Deeply Virtual Compton Scattering and Nucleon Structure

Deeply Virtual Compton Scattering and Nucleon Structure PDF Author: M. Garcon
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Deeply Virtual Compton Scattering (DVCS) is the tool of choice to study Generalized Parton Distributions (GPD) in the nucleon. After a general introduction to the subject, a review of experimental results from various facilities is given. Following the first encouraging results, new generation dedicated experiments now allow unprecedented precision and kinematical coverage. Several new results were presented during the conference, showing significant progress in this relatively new field. Prospects for future experiments are presented. The path for the experimental determination of GPDs appears now open.

Deeply Virtual Compton Scattering in Hall A at Jefferson Lab

Deeply Virtual Compton Scattering in Hall A at Jefferson Lab PDF Author: Carlos Munoz Camacho
Publisher: LAP Lambert Academic Publishing
ISBN: 9783838315034
Category :
Languages : en
Pages : 152

Get Book Here

Book Description
Generalized Parton Distributions (GPDs), introduced in the late 90s, provide a universal description of hadrons in terms of the underlying degrees of freedom of Quantum Chromodynamics: quarks and gluons. GPDs appear in a wide variety of hard exclusive reactions and the advent of high luminosity accelerator facilities has made the study of GPDs accessible to experiment. Deeply Virtual Compton Scattering (DVCS) is the golden process involving GPDs. The first dedicated DVCS experiment ran in the Hall A of Jefferson Lab in Fall 2004. An electromagnetic calorimeter and a plastic scintillator detector were constructed for this experiment, together with specific electronics and acquisition system. The experiment preparation, data taking and analysis are described in this document. Results on the absolute cross section difference for opposite beam helicities provide the first measurement of a linear combination of GPDs as a function of the momentum transfer to the nucleon.