Author: Geoffrey McLachlan
Publisher: John Wiley & Sons
ISBN: 047165406X
Category : Mathematics
Languages : en
Pages : 419
Book Description
An up-to-date, comprehensive account of major issues in finitemixture modeling This volume provides an up-to-date account of the theory andapplications of modeling via finite mixture distributions. With anemphasis on the applications of mixture models in both mainstreamanalysis and other areas such as unsupervised pattern recognition,speech recognition, and medical imaging, the book describes theformulations of the finite mixture approach, details itsmethodology, discusses aspects of its implementation, andillustrates its application in many common statisticalcontexts. Major issues discussed in this book include identifiabilityproblems, actual fitting of finite mixtures through use of the EMalgorithm, properties of the maximum likelihood estimators soobtained, assessment of the number of components to be used in themixture, and the applicability of asymptotic theory in providing abasis for the solutions to some of these problems. The author alsoconsiders how the EM algorithm can be scaled to handle the fittingof mixture models to very large databases, as in data miningapplications. This comprehensive, practical guide: * Provides more than 800 references-40% published since 1995 * Includes an appendix listing available mixture software * Links statistical literature with machine learning and patternrecognition literature * Contains more than 100 helpful graphs, charts, and tables Finite Mixture Models is an important resource for both applied andtheoretical statisticians as well as for researchers in the manyareas in which finite mixture models can be used to analyze data.
Finite Mixture Models
Author: Geoffrey McLachlan
Publisher: John Wiley & Sons
ISBN: 047165406X
Category : Mathematics
Languages : en
Pages : 419
Book Description
An up-to-date, comprehensive account of major issues in finitemixture modeling This volume provides an up-to-date account of the theory andapplications of modeling via finite mixture distributions. With anemphasis on the applications of mixture models in both mainstreamanalysis and other areas such as unsupervised pattern recognition,speech recognition, and medical imaging, the book describes theformulations of the finite mixture approach, details itsmethodology, discusses aspects of its implementation, andillustrates its application in many common statisticalcontexts. Major issues discussed in this book include identifiabilityproblems, actual fitting of finite mixtures through use of the EMalgorithm, properties of the maximum likelihood estimators soobtained, assessment of the number of components to be used in themixture, and the applicability of asymptotic theory in providing abasis for the solutions to some of these problems. The author alsoconsiders how the EM algorithm can be scaled to handle the fittingof mixture models to very large databases, as in data miningapplications. This comprehensive, practical guide: * Provides more than 800 references-40% published since 1995 * Includes an appendix listing available mixture software * Links statistical literature with machine learning and patternrecognition literature * Contains more than 100 helpful graphs, charts, and tables Finite Mixture Models is an important resource for both applied andtheoretical statisticians as well as for researchers in the manyareas in which finite mixture models can be used to analyze data.
Publisher: John Wiley & Sons
ISBN: 047165406X
Category : Mathematics
Languages : en
Pages : 419
Book Description
An up-to-date, comprehensive account of major issues in finitemixture modeling This volume provides an up-to-date account of the theory andapplications of modeling via finite mixture distributions. With anemphasis on the applications of mixture models in both mainstreamanalysis and other areas such as unsupervised pattern recognition,speech recognition, and medical imaging, the book describes theformulations of the finite mixture approach, details itsmethodology, discusses aspects of its implementation, andillustrates its application in many common statisticalcontexts. Major issues discussed in this book include identifiabilityproblems, actual fitting of finite mixtures through use of the EMalgorithm, properties of the maximum likelihood estimators soobtained, assessment of the number of components to be used in themixture, and the applicability of asymptotic theory in providing abasis for the solutions to some of these problems. The author alsoconsiders how the EM algorithm can be scaled to handle the fittingof mixture models to very large databases, as in data miningapplications. This comprehensive, practical guide: * Provides more than 800 references-40% published since 1995 * Includes an appendix listing available mixture software * Links statistical literature with machine learning and patternrecognition literature * Contains more than 100 helpful graphs, charts, and tables Finite Mixture Models is an important resource for both applied andtheoretical statisticians as well as for researchers in the manyareas in which finite mixture models can be used to analyze data.
Recent Developments in Ordered Random Variables
Author: Mohammad Ahsanullah
Publisher: Nova Publishers
ISBN: 9781600213014
Category : Mathematics
Languages : en
Pages : 352
Book Description
The ordered random variables play important roles in the theory and practice of statistics. They possess significant statistical properties. Over the last few decades, many articles on various topics of ordered statistical data have appeared. Our handbook comprises twenty one chapters discussing various topics on theory and applications. The editors of this book worked together several articles on order and record statistics, which covered the subjects of distributional properties, characterisations and statistical inferences. It was a special interest to co-ordinate and edit an interesting research problem based on material contributed by several prominent researchers from all over the world. This book presents new developments in the subject of ordered random variables. These aspects involve theory of ordered random variables, reliability theory, stochastic ordering, bounds, characterisations, and estimation and prediction techniques.
Publisher: Nova Publishers
ISBN: 9781600213014
Category : Mathematics
Languages : en
Pages : 352
Book Description
The ordered random variables play important roles in the theory and practice of statistics. They possess significant statistical properties. Over the last few decades, many articles on various topics of ordered statistical data have appeared. Our handbook comprises twenty one chapters discussing various topics on theory and applications. The editors of this book worked together several articles on order and record statistics, which covered the subjects of distributional properties, characterisations and statistical inferences. It was a special interest to co-ordinate and edit an interesting research problem based on material contributed by several prominent researchers from all over the world. This book presents new developments in the subject of ordered random variables. These aspects involve theory of ordered random variables, reliability theory, stochastic ordering, bounds, characterisations, and estimation and prediction techniques.
New Developments in Applied Statistics Research
Author: Mohammad Ahsanullah
Publisher: Nova Publishers
ISBN: 9781604561753
Category : Mathematics
Languages : en
Pages : 220
Book Description
Computers have taken a permanent place in almost every human endeavor in the last 20 years. This infiltration requires a learning process on the part of the people utilising them and realising where and how they can be best used beyond the basic and obvious applications. Statistics is an example of their application in many diverse fields to reach conclusions and make projections never before possible. Beyond this, applied statistics is rapidly becoming not only an instrument, but an integral part of the advance of knowledge. There are many fields such as medicine, biology, weather prediction, military planning, and many others where the statistical studies are essential before the next step can be taken. This book presents recent research in the field from around the globe.
Publisher: Nova Publishers
ISBN: 9781604561753
Category : Mathematics
Languages : en
Pages : 220
Book Description
Computers have taken a permanent place in almost every human endeavor in the last 20 years. This infiltration requires a learning process on the part of the people utilising them and realising where and how they can be best used beyond the basic and obvious applications. Statistics is an example of their application in many diverse fields to reach conclusions and make projections never before possible. Beyond this, applied statistics is rapidly becoming not only an instrument, but an integral part of the advance of knowledge. There are many fields such as medicine, biology, weather prediction, military planning, and many others where the statistical studies are essential before the next step can be taken. This book presents recent research in the field from around the globe.
Handbook of Market Research
Author: Christian Homburg
Publisher: Springer
ISBN: 9783319574110
Category : Business & Economics
Languages : en
Pages : 0
Book Description
In this handbook, internationally renowned scholars outline the current state-of-the-art of quantitative and qualitative market research. They discuss focal approaches to market research and guide students and practitioners in their real-life applications. Aspects covered include topics on data-related issues, methods, and applications. Data-related topics comprise chapters on experimental design, survey research methods, international market research, panel data fusion, and endogeneity. Method-oriented chapters look at a wide variety of data analysis methods relevant for market research, including chapters on regression, structural equation modeling (SEM), conjoint analysis, and text analysis. Application chapters focus on specific topics relevant for market research such as customer satisfaction, customer retention modeling, return on marketing, and return on price promotions. Each chapter is written by an expert in the field. The presentation of the material seeks to improve the intuitive and technical understanding of the methods covered.
Publisher: Springer
ISBN: 9783319574110
Category : Business & Economics
Languages : en
Pages : 0
Book Description
In this handbook, internationally renowned scholars outline the current state-of-the-art of quantitative and qualitative market research. They discuss focal approaches to market research and guide students and practitioners in their real-life applications. Aspects covered include topics on data-related issues, methods, and applications. Data-related topics comprise chapters on experimental design, survey research methods, international market research, panel data fusion, and endogeneity. Method-oriented chapters look at a wide variety of data analysis methods relevant for market research, including chapters on regression, structural equation modeling (SEM), conjoint analysis, and text analysis. Application chapters focus on specific topics relevant for market research such as customer satisfaction, customer retention modeling, return on marketing, and return on price promotions. Each chapter is written by an expert in the field. The presentation of the material seeks to improve the intuitive and technical understanding of the methods covered.
Model-Based Clustering and Classification for Data Science
Author: Charles Bouveyron
Publisher: Cambridge University Press
ISBN: 1108640591
Category : Mathematics
Languages : en
Pages : 447
Book Description
Cluster analysis finds groups in data automatically. Most methods have been heuristic and leave open such central questions as: how many clusters are there? Which method should I use? How should I handle outliers? Classification assigns new observations to groups given previously classified observations, and also has open questions about parameter tuning, robustness and uncertainty assessment. This book frames cluster analysis and classification in terms of statistical models, thus yielding principled estimation, testing and prediction methods, and sound answers to the central questions. It builds the basic ideas in an accessible but rigorous way, with extensive data examples and R code; describes modern approaches to high-dimensional data and networks; and explains such recent advances as Bayesian regularization, non-Gaussian model-based clustering, cluster merging, variable selection, semi-supervised and robust classification, clustering of functional data, text and images, and co-clustering. Written for advanced undergraduates in data science, as well as researchers and practitioners, it assumes basic knowledge of multivariate calculus, linear algebra, probability and statistics.
Publisher: Cambridge University Press
ISBN: 1108640591
Category : Mathematics
Languages : en
Pages : 447
Book Description
Cluster analysis finds groups in data automatically. Most methods have been heuristic and leave open such central questions as: how many clusters are there? Which method should I use? How should I handle outliers? Classification assigns new observations to groups given previously classified observations, and also has open questions about parameter tuning, robustness and uncertainty assessment. This book frames cluster analysis and classification in terms of statistical models, thus yielding principled estimation, testing and prediction methods, and sound answers to the central questions. It builds the basic ideas in an accessible but rigorous way, with extensive data examples and R code; describes modern approaches to high-dimensional data and networks; and explains such recent advances as Bayesian regularization, non-Gaussian model-based clustering, cluster merging, variable selection, semi-supervised and robust classification, clustering of functional data, text and images, and co-clustering. Written for advanced undergraduates in data science, as well as researchers and practitioners, it assumes basic knowledge of multivariate calculus, linear algebra, probability and statistics.
Finite Mixture and Markov Switching Models
Author: Sylvia Frühwirth-Schnatter
Publisher: Springer Science & Business Media
ISBN: 0387357688
Category : Mathematics
Languages : en
Pages : 506
Book Description
The past decade has seen powerful new computational tools for modeling which combine a Bayesian approach with recent Monte simulation techniques based on Markov chains. This book is the first to offer a systematic presentation of the Bayesian perspective of finite mixture modelling. The book is designed to show finite mixture and Markov switching models are formulated, what structures they imply on the data, their potential uses, and how they are estimated. Presenting its concepts informally without sacrificing mathematical correctness, it will serve a wide readership including statisticians as well as biologists, economists, engineers, financial and market researchers.
Publisher: Springer Science & Business Media
ISBN: 0387357688
Category : Mathematics
Languages : en
Pages : 506
Book Description
The past decade has seen powerful new computational tools for modeling which combine a Bayesian approach with recent Monte simulation techniques based on Markov chains. This book is the first to offer a systematic presentation of the Bayesian perspective of finite mixture modelling. The book is designed to show finite mixture and Markov switching models are formulated, what structures they imply on the data, their potential uses, and how they are estimated. Presenting its concepts informally without sacrificing mathematical correctness, it will serve a wide readership including statisticians as well as biologists, economists, engineers, financial and market researchers.
Mixture Models and Applications
Author: Nizar Bouguila
Publisher: Springer
ISBN: 3030238768
Category : Technology & Engineering
Languages : en
Pages : 356
Book Description
This book focuses on recent advances, approaches, theories and applications related to mixture models. In particular, it presents recent unsupervised and semi-supervised frameworks that consider mixture models as their main tool. The chapters considers mixture models involving several interesting and challenging problems such as parameters estimation, model selection, feature selection, etc. The goal of this book is to summarize the recent advances and modern approaches related to these problems. Each contributor presents novel research, a practical study, or novel applications based on mixture models, or a survey of the literature. Reports advances on classic problems in mixture modeling such as parameter estimation, model selection, and feature selection; Present theoretical and practical developments in mixture-based modeling and their importance in different applications; Discusses perspectives and challenging future works related to mixture modeling.
Publisher: Springer
ISBN: 3030238768
Category : Technology & Engineering
Languages : en
Pages : 356
Book Description
This book focuses on recent advances, approaches, theories and applications related to mixture models. In particular, it presents recent unsupervised and semi-supervised frameworks that consider mixture models as their main tool. The chapters considers mixture models involving several interesting and challenging problems such as parameters estimation, model selection, feature selection, etc. The goal of this book is to summarize the recent advances and modern approaches related to these problems. Each contributor presents novel research, a practical study, or novel applications based on mixture models, or a survey of the literature. Reports advances on classic problems in mixture modeling such as parameter estimation, model selection, and feature selection; Present theoretical and practical developments in mixture-based modeling and their importance in different applications; Discusses perspectives and challenging future works related to mixture modeling.
Mixture Model-Based Classification
Author: Paul D. McNicholas
Publisher: CRC Press
ISBN: 1482225670
Category : Mathematics
Languages : en
Pages : 212
Book Description
"This is a great overview of the field of model-based clustering and classification by one of its leading developers. McNicholas provides a resource that I am certain will be used by researchers in statistics and related disciplines for quite some time. The discussion of mixtures with heavy tails and asymmetric distributions will place this text as the authoritative, modern reference in the mixture modeling literature." (Douglas Steinley, University of Missouri) Mixture Model-Based Classification is the first monograph devoted to mixture model-based approaches to clustering and classification. This is both a book for established researchers and newcomers to the field. A history of mixture models as a tool for classification is provided and Gaussian mixtures are considered extensively, including mixtures of factor analyzers and other approaches for high-dimensional data. Non-Gaussian mixtures are considered, from mixtures with components that parameterize skewness and/or concentration, right up to mixtures of multiple scaled distributions. Several other important topics are considered, including mixture approaches for clustering and classification of longitudinal data as well as discussion about how to define a cluster Paul D. McNicholas is the Canada Research Chair in Computational Statistics at McMaster University, where he is a Professor in the Department of Mathematics and Statistics. His research focuses on the use of mixture model-based approaches for classification, with particular attention to clustering applications, and he has published extensively within the field. He is an associate editor for several journals and has served as a guest editor for a number of special issues on mixture models.
Publisher: CRC Press
ISBN: 1482225670
Category : Mathematics
Languages : en
Pages : 212
Book Description
"This is a great overview of the field of model-based clustering and classification by one of its leading developers. McNicholas provides a resource that I am certain will be used by researchers in statistics and related disciplines for quite some time. The discussion of mixtures with heavy tails and asymmetric distributions will place this text as the authoritative, modern reference in the mixture modeling literature." (Douglas Steinley, University of Missouri) Mixture Model-Based Classification is the first monograph devoted to mixture model-based approaches to clustering and classification. This is both a book for established researchers and newcomers to the field. A history of mixture models as a tool for classification is provided and Gaussian mixtures are considered extensively, including mixtures of factor analyzers and other approaches for high-dimensional data. Non-Gaussian mixtures are considered, from mixtures with components that parameterize skewness and/or concentration, right up to mixtures of multiple scaled distributions. Several other important topics are considered, including mixture approaches for clustering and classification of longitudinal data as well as discussion about how to define a cluster Paul D. McNicholas is the Canada Research Chair in Computational Statistics at McMaster University, where he is a Professor in the Department of Mathematics and Statistics. His research focuses on the use of mixture model-based approaches for classification, with particular attention to clustering applications, and he has published extensively within the field. He is an associate editor for several journals and has served as a guest editor for a number of special issues on mixture models.
Mixtures
Author: Kerrie L. Mengersen
Publisher: John Wiley & Sons
ISBN: 1119998441
Category : Mathematics
Languages : en
Pages : 352
Book Description
This book uses the EM (expectation maximization) algorithm to simultaneously estimate the missing data and unknown parameter(s) associated with a data set. The parameters describe the component distributions of the mixture; the distributions may be continuous or discrete. The editors provide a complete account of the applications, mathematical structure and statistical analysis of finite mixture distributions along with MCMC computational methods, together with a range of detailed discussions covering the applications of the methods and features chapters from the leading experts on the subject. The applications are drawn from scientific discipline, including biostatistics, computer science, ecology and finance. This area of statistics is important to a range of disciplines, and its methodology attracts interest from researchers in the fields in which it can be applied.
Publisher: John Wiley & Sons
ISBN: 1119998441
Category : Mathematics
Languages : en
Pages : 352
Book Description
This book uses the EM (expectation maximization) algorithm to simultaneously estimate the missing data and unknown parameter(s) associated with a data set. The parameters describe the component distributions of the mixture; the distributions may be continuous or discrete. The editors provide a complete account of the applications, mathematical structure and statistical analysis of finite mixture distributions along with MCMC computational methods, together with a range of detailed discussions covering the applications of the methods and features chapters from the leading experts on the subject. The applications are drawn from scientific discipline, including biostatistics, computer science, ecology and finance. This area of statistics is important to a range of disciplines, and its methodology attracts interest from researchers in the fields in which it can be applied.
Mixture Models
Author: Bruce G. Lindsay
Publisher: IMS
ISBN: 9780940600324
Category : Mathematics
Languages : en
Pages : 184
Book Description
Publisher: IMS
ISBN: 9780940600324
Category : Mathematics
Languages : en
Pages : 184
Book Description