Generalized Convexity and Related Topics

Generalized Convexity and Related Topics PDF Author: Igor V. Konnov
Publisher: Springer Science & Business Media
ISBN: 3540370072
Category : Business & Economics
Languages : en
Pages : 465

Get Book Here

Book Description
The book contains invited papers by well-known experts on a wide range of topics (economics, variational analysis, probability etc.) closely related to convexity and generalized convexity, and refereed contributions of specialists from the world on current research on generalized convexity and applications, in particular, to optimization, economics and operations research.

Generalized Convexity and Related Topics

Generalized Convexity and Related Topics PDF Author: Igor V. Konnov
Publisher: Springer Science & Business Media
ISBN: 3540370072
Category : Business & Economics
Languages : en
Pages : 465

Get Book Here

Book Description
The book contains invited papers by well-known experts on a wide range of topics (economics, variational analysis, probability etc.) closely related to convexity and generalized convexity, and refereed contributions of specialists from the world on current research on generalized convexity and applications, in particular, to optimization, economics and operations research.

Generalized Convexity and Optimization

Generalized Convexity and Optimization PDF Author: Alberto Cambini
Publisher: Springer Science & Business Media
ISBN: 3540708766
Category : Mathematics
Languages : en
Pages : 252

Get Book Here

Book Description
The authors have written a rigorous yet elementary and self-contained book to present, in a unified framework, generalized convex functions. The book also includes numerous exercises and two appendices which list the findings consulted.

Generalized Convexity, Nonsmooth Variational Inequalities, and Nonsmooth Optimization

Generalized Convexity, Nonsmooth Variational Inequalities, and Nonsmooth Optimization PDF Author: Qamrul Hasan Ansari
Publisher: CRC Press
ISBN: 1439868212
Category : Business & Economics
Languages : en
Pages : 294

Get Book Here

Book Description
Until now, no book addressed convexity, monotonicity, and variational inequalities together. Generalized Convexity, Nonsmooth Variational Inequalities, and Nonsmooth Optimization covers all three topics, including new variational inequality problems defined by a bifunction.The first part of the book focuses on generalized convexity and generalized

Generalized Convexity

Generalized Convexity PDF Author: Sandor Komlosi
Publisher: Springer Science & Business Media
ISBN: 3642468020
Category : Business & Economics
Languages : en
Pages : 406

Get Book Here

Book Description
Generalizations of the classical concept of a convex function have been proposed in various fields such as economics, management science, engineering, statistics and applied sciences during the second half of this century. In addition to new results in more established areas of generalized convexity, this book presents several important developments in recently emerging areas. Also, a number of interesting applications are reported.

Handbook of Generalized Convexity and Generalized Monotonicity

Handbook of Generalized Convexity and Generalized Monotonicity PDF Author: Nicolas Hadjisavvas
Publisher: Springer Science & Business Media
ISBN: 0387233938
Category : Mathematics
Languages : en
Pages : 684

Get Book Here

Book Description
Studies in generalized convexity and generalized monotonicity have significantly increased during the last two decades. Researchers with very diverse backgrounds such as mathematical programming, optimization theory, convex analysis, nonlinear analysis, nonsmooth analysis, linear algebra, probability theory, variational inequalities, game theory, economic theory, engineering, management science, equilibrium analysis, for example are attracted to this fast growing field of study. Such enormous research activity is partially due to the discovery of a rich, elegant and deep theory which provides a basis for interesting existing and potential applications in different disciplines. The handbook offers an advanced and broad overview of the current state of the field. It contains fourteen chapters written by the leading experts on the respective subject; eight on generalized convexity and the remaining six on generalized monotonicity.

Generalized Concavity

Generalized Concavity PDF Author: Mordecai Avriel
Publisher: SIAM
ISBN: 0898718961
Category : Mathematics
Languages : en
Pages : 342

Get Book Here

Book Description
Originally published: New York: Plenum Press, 1988.

Generalized Convexity, Generalized Monotonicity: Recent Results

Generalized Convexity, Generalized Monotonicity: Recent Results PDF Author: Jean-Pierre Crouzeix
Publisher: Springer Science & Business Media
ISBN: 1461333415
Category : Mathematics
Languages : en
Pages : 469

Get Book Here

Book Description
A function is convex if its epigraph is convex. This geometrical structure has very strong implications in terms of continuity and differentiability. Separation theorems lead to optimality conditions and duality for convex problems. A function is quasiconvex if its lower level sets are convex. Here again, the geo metrical structure of the level sets implies some continuity and differentiability properties for quasiconvex functions. Optimality conditions and duality can be derived for optimization problems involving such functions as well. Over a period of about fifty years, quasiconvex and other generalized convex functions have been considered in a variety of fields including economies, man agement science, engineering, probability and applied sciences in accordance with the need of particular applications. During the last twenty-five years, an increase of research activities in this field has been witnessed. More recently generalized monotonicity of maps has been studied. It relates to generalized convexity off unctions as monotonicity relates to convexity. Generalized monotonicity plays a role in variational inequality problems, complementarity problems and more generally, in equilibrium prob lems.

Convex Optimization

Convex Optimization PDF Author: Stephen P. Boyd
Publisher: Cambridge University Press
ISBN: 9780521833783
Category : Business & Economics
Languages : en
Pages : 744

Get Book Here

Book Description
Convex optimization problems arise frequently in many different fields. This book provides a comprehensive introduction to the subject, and shows in detail how such problems can be solved numerically with great efficiency. The book begins with the basic elements of convex sets and functions, and then describes various classes of convex optimization problems. Duality and approximation techniques are then covered, as are statistical estimation techniques. Various geometrical problems are then presented, and there is detailed discussion of unconstrained and constrained minimization problems, and interior-point methods. The focus of the book is on recognizing convex optimization problems and then finding the most appropriate technique for solving them. It contains many worked examples and homework exercises and will appeal to students, researchers and practitioners in fields such as engineering, computer science, mathematics, statistics, finance and economics.

Abstract Convexity and Global Optimization

Abstract Convexity and Global Optimization PDF Author: Alexander M. Rubinov
Publisher: Springer Science & Business Media
ISBN: 9780792363231
Category : Mathematics
Languages : en
Pages : 516

Get Book Here

Book Description
This book consists of two parts. Firstly, the main notions of abstract convexity and their applications in the study of some classes of functions and sets are presented. Secondly, both theoretical and numerical aspects of global optimization based on abstract convexity are examined. Most of the book does not require knowledge of advanced mathematics. Classical methods of nonconvex mathematical programming, being based on a local approximation, cannot be used to examine and solve many problems of global optimization, and so there is a clear need to develop special global tools for solving these problems. Some of these tools are based on abstract convexity, that is, on the representation of a function of a rather complicated nature as the upper envelope of a set of fairly simple functions. Audience: The book will be of interest to specialists in global optimization, mathematical programming, and convex analysis, as well as engineers using mathematical tools and optimization techniques and specialists in mathematical modelling.

Quasidifferentiability and Related Topics

Quasidifferentiability and Related Topics PDF Author: Vladimir F. Demyanov
Publisher: Springer Science & Business Media
ISBN: 9780792362845
Category : Technology & Engineering
Languages : en
Pages : 420

Get Book Here

Book Description
2 Radiant sets 236 3 Co-radiant sets 239 4 Radiative and co-radiative sets 241 5 Radiant sets with Lipschitz continuous Minkowski gauges 245 6 Star-shaped sets and their kernels 249 7 Separation 251 8 Abstract convex star-shaped sets 255 References 260 11 DIFFERENCES OF CONVEX COMPACTA AND METRIC SPACES OF CON- 263 VEX COMPACTA WITH APPLICATIONS: A SURVEY A. M. Rubinov, A. A. Vladimirov 1 Introduction 264 2 Preliminaries 264 3 Differences of convex compact sets: general approach 266 4 Metric projections and corresponding differences (one-dimensional case) 267 5 The *-difference 269 6 The Demyanov difference 271 7 Geometric and inductive definitions of the D-difference 273 8 Applications to DC and quasidifferentiable functions 276 9 Differences of pairs of set-valued mappings with applications to quasidiff- entiability 278 10 Applications to approximate subdifferentials 280 11 Applications to the approximation of linear set-valued mappings 281 12 The Demyanov metric 282 13 The Bartels-Pallaschke metric 284 14 Hierarchy of the three norms on Qn 285 15 Derivatives 287 16 Distances from convex polyhedra and convergence of convex polyhedra 289 17 Normality of convex sets 290 18 D-regular sets 291 19 Variable D-regular sets 292 20 Optimization 293 References 294 12 CONVEX APPROXIMATORS.