Generalized Collocation Methods

Generalized Collocation Methods PDF Author: Nicola Bellomo
Publisher: Springer Science & Business Media
ISBN: 081764525X
Category : Mathematics
Languages : en
Pages : 206

Get Book Here

Book Description
Analysis of nonlinear models and problems is crucial in the application of mathematics to real-world problems. This book approaches this important topic by focusing on collocation methods for solving nonlinear evolution equations and applying them to a variety of mathematical problems. These include wave motion models, hydrodynamic models of vehicular traffic flow, convection-diffusion models, reaction-diffusion models, and population dynamics models. The book may be used as a textbook for graduate courses on collocation methods, nonlinear modeling, and nonlinear differential equations. Examples and exercises are included in every chapter.

Generalized Collocation Methods

Generalized Collocation Methods PDF Author: Nicola Bellomo
Publisher: Springer Science & Business Media
ISBN: 081764525X
Category : Mathematics
Languages : en
Pages : 206

Get Book Here

Book Description
Analysis of nonlinear models and problems is crucial in the application of mathematics to real-world problems. This book approaches this important topic by focusing on collocation methods for solving nonlinear evolution equations and applying them to a variety of mathematical problems. These include wave motion models, hydrodynamic models of vehicular traffic flow, convection-diffusion models, reaction-diffusion models, and population dynamics models. The book may be used as a textbook for graduate courses on collocation methods, nonlinear modeling, and nonlinear differential equations. Examples and exercises are included in every chapter.

Generalized Collocation Methods

Generalized Collocation Methods PDF Author: Nicola Bellomo
Publisher: Springer Science & Business Media
ISBN: 0817646108
Category : Mathematics
Languages : en
Pages : 206

Get Book Here

Book Description
Analysis of nonlinear models and problems is crucial in the application of mathematics to real-world problems. This book approaches this important topic by focusing on collocation methods for solving nonlinear evolution equations and applying them to a variety of mathematical problems. These include wave motion models, hydrodynamic models of vehicular traffic flow, convection-diffusion models, reaction-diffusion models, and population dynamics models. The book may be used as a textbook for graduate courses on collocation methods, nonlinear modeling, and nonlinear differential equations. Examples and exercises are included in every chapter.

Generalized Multipole Techniques for Electromagnetic and Light Scattering

Generalized Multipole Techniques for Electromagnetic and Light Scattering PDF Author: T. Wriedt
Publisher: Elsevier
ISBN: 0080532373
Category : Technology & Engineering
Languages : en
Pages : 273

Get Book Here

Book Description
This book is an edited volume of nine papers covering the different variants of the generalized multipole techniques (GMT). The papers were presented at the recent 3rd Workshop on Electromagnetics and Light Scattering - Theory and Applications, which focused on current GMT methods. These include the multiple multipole method (MMP), the discrete sources method (DSM), Yasuura's method, method of auxiliary sources and null-field method with discrete sources. Each paper presents a full theoretical description as well as some applications of the method in electrical engineering and optics. It also includes both 2D and 3D methods and other applications developed in the former Soviet Union and Japan.

Uncertainty Management for Robust Industrial Design in Aeronautics

Uncertainty Management for Robust Industrial Design in Aeronautics PDF Author: Charles Hirsch
Publisher: Springer
ISBN: 331977767X
Category : Technology & Engineering
Languages : en
Pages : 799

Get Book Here

Book Description
This book covers cutting-edge findings related to uncertainty quantification and optimization under uncertainties (i.e. robust and reliable optimization), with a special emphasis on aeronautics and turbomachinery, although not limited to these fields. It describes new methods for uncertainty quantification, such as non-intrusive polynomial chaos, collocation methods, perturbation methods, as well as adjoint based and multi-level Monte Carlo methods. It includes methods for characterization of most influential uncertainties, as well as formulations for robust and reliable design optimization. A distinctive element of the book is the unique collection of test cases with prescribed uncertainties, which are representative of the current engineering practice of the industrial consortium partners involved in UMRIDA, a level 1 collaborative project within the European Commission's Seventh Framework Programme (FP7). All developed methods are benchmarked against these industrial challenges. Moreover, the book includes a section dedicated to Best Practice Guidelines for uncertainty quantification and robust design optimization, summarizing the findings obtained by the consortium members within the UMRIDA project. All in all, the book offers a authoritative guide to cutting-edge methodologies for uncertainty management in engineering design, covers a wide range of applications and discusses new ideas for future research and interdisciplinary collaborations.

Collocation Methods for Volterra Integral and Related Functional Differential Equations

Collocation Methods for Volterra Integral and Related Functional Differential Equations PDF Author: Hermann Brunner
Publisher: Cambridge University Press
ISBN: 9780521806152
Category : Mathematics
Languages : en
Pages : 620

Get Book Here

Book Description
Collocation based on piecewise polynomial approximation represents a powerful class of methods for the numerical solution of initial-value problems for functional differential and integral equations arising in a wide spectrum of applications, including biological and physical phenomena. The present book introduces the reader to the general principles underlying these methods and then describes in detail their convergence properties when applied to ordinary differential equations, functional equations with (Volterra type) memory terms, delay equations, and differential-algebraic and integral-algebraic equations. Each chapter starts with a self-contained introduction to the relevant theory of the class of equations under consideration. Numerous exercises and examples are supplied, along with extensive historical and bibliographical notes utilising the vast annotated reference list of over 1300 items. In sum, Hermann Brunner has written a treatise that can serve as an introduction for students, a guide for users, and a comprehensive resource for experts.

Spectral and High Order Methods for Partial Differential Equations

Spectral and High Order Methods for Partial Differential Equations PDF Author: Jan S. Hesthaven
Publisher: Springer Science & Business Media
ISBN: 3642153372
Category : Mathematics
Languages : en
Pages : 507

Get Book Here

Book Description
The book contains a selection of high quality papers, chosen among the best presentations during the International Conference on Spectral and High-Order Methods (2009), and provides an overview of the depth and breadth of the activities within this important research area. The carefully reviewed selection of the papers will provide the reader with a snapshot of state-of-the-art and help initiate new research directions through the extensive bibliography.

Differential-algebraic Equations

Differential-algebraic Equations PDF Author: Peter Kunkel
Publisher: European Mathematical Society
ISBN: 9783037190173
Category : Boundary value problems
Languages : en
Pages : 396

Get Book Here

Book Description
Differential-algebraic equations are a widely accepted tool for the modeling and simulation of constrained dynamical systems in numerous applications, such as mechanical multibody systems, electrical circuit simulation, chemical engineering, control theory, fluid dynamics and many others. This is the first comprehensive textbook that provides a systematic and detailed analysis of initial and boundary value problems for differential-algebraic equations. The analysis is developed from the theory of linear constant coefficient systems via linear variable coefficient systems to general nonlinear systems. Further sections on control problems, generalized inverses of differential-algebraic operators, generalized solutions, and differential equations on manifolds complement the theoretical treatment of initial value problems. Two major classes of numerical methods for differential-algebraic equations (Runge-Kutta and BDF methods) are discussed and analyzed with respect to convergence and order. A chapter is devoted to index reduction methods that allow the numerical treatment of general differential-algebraic equations. The analysis and numerical solution of boundary value problems for differential-algebraic equations is presented, including multiple shooting and collocation methods. A survey of current software packages for differential-algebraic equations completes the text. The book is addressed to graduate students and researchers in mathematics, engineering and sciences, as well as practitioners in industry. A prerequisite is a standard course on the numerical solution of ordinary differential equations. Numerous examples and exercises make the book suitable as a course textbook or for self-study.

Differential Quadrature and Its Application in Engineering

Differential Quadrature and Its Application in Engineering PDF Author: Chang Shu
Publisher: Springer Science & Business Media
ISBN: 9781852332099
Category : Mathematics
Languages : en
Pages : 366

Get Book Here

Book Description
In the past few years, the differential quadrature method has been applied extensively in engineering. This book, aimed primarily at practising engineers, scientists and graduate students, gives a systematic description of the mathematical fundamentals of differential quadrature and its detailed implementation in solving Helmholtz problems and problems of flow, structure and vibration. Differential quadrature provides a global approach to numerical discretization, which approximates the derivatives by a linear weighted sum of all the functional values in the whole domain. Following the analysis of function approximation and the analysis of a linear vector space, it is shown in the book that the weighting coefficients of the polynomial-based, Fourier expansion-based, and exponential-based differential quadrature methods can be computed explicitly. It is also demonstrated that the polynomial-based differential quadrature method is equivalent to the highest-order finite difference scheme. Furthermore, the relationship between differential quadrature and conventional spectral collocation is analysed. The book contains material on: - Linear Vector Space Analysis and the Approximation of a Function; - Polynomial-, Fourier Expansion- and Exponential-based Differential Quadrature; - Differential Quadrature Weighting Coefficient Matrices; - Solution of Differential Quadrature-resultant Equations; - The Solution of Incompressible Navier-Stokes and Helmholtz Equations; - Structural and Vibrational Analysis Applications; - Generalized Integral Quadrature and its Application in the Solution of Boundary Layer Equations. Three FORTRAN programs for simulation of driven cavity flow, vibration analysis of plate and Helmholtz eigenvalue problems respectively, are appended. These sample programs should give the reader a better understanding of differential quadrature and can easily be modified to solve the readers own engineering problems.

Handbook of Uncertainty Quantification

Handbook of Uncertainty Quantification PDF Author: Roger Ghanem
Publisher: Springer
ISBN: 9783319123844
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
The topic of Uncertainty Quantification (UQ) has witnessed massive developments in response to the promise of achieving risk mitigation through scientific prediction. It has led to the integration of ideas from mathematics, statistics and engineering being used to lend credence to predictive assessments of risk but also to design actions (by engineers, scientists and investors) that are consistent with risk aversion. The objective of this Handbook is to facilitate the dissemination of the forefront of UQ ideas to their audiences. We recognize that these audiences are varied, with interests ranging from theory to application, and from research to development and even execution.

The Optimal Homotopy Asymptotic Method

The Optimal Homotopy Asymptotic Method PDF Author: Vasile Marinca
Publisher: Springer
ISBN: 3319153749
Category : Technology & Engineering
Languages : en
Pages : 476

Get Book Here

Book Description
This book emphasizes in detail the applicability of the Optimal Homotopy Asymptotic Method to various engineering problems. It is a continuation of the book “Nonlinear Dynamical Systems in Engineering: Some Approximate Approaches”, published at Springer in 2011 and it contains a great amount of practical models from various fields of engineering such as classical and fluid mechanics, thermodynamics, nonlinear oscillations, electrical machines and so on. The main structure of the book consists of 5 chapters. The first chapter is introductory while the second chapter is devoted to a short history of the development of homotopy methods, including the basic ideas of the Optimal Homotopy Asymptotic Method. The last three chapters, from Chapter 3 to Chapter 5, are introducing three distinct alternatives of the Optimal Homotopy Asymptotic Method with illustrative applications to nonlinear dynamical systems. The third chapter deals with the first alternative of our approach with two iterations. Five applications are presented from fluid mechanics and nonlinear oscillations. The Chapter 4 presents the Optimal Homotopy Asymptotic Method with a single iteration and solving the linear equation on the first approximation. Here are treated 32 models from different fields of engineering such as fluid mechanics, thermodynamics, nonlinear damped and undamped oscillations, electrical machines and even from physics and biology. The last chapter is devoted to the Optimal Homotopy Asymptotic Method with a single iteration but without solving the equation in the first approximation.