Author: Carl Edward Rasmussen
Publisher: MIT Press
ISBN: 026218253X
Category : Computers
Languages : en
Pages : 266
Book Description
A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.
Gaussian Processes for Machine Learning
Author: Carl Edward Rasmussen
Publisher: MIT Press
ISBN: 026218253X
Category : Computers
Languages : en
Pages : 266
Book Description
A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.
Publisher: MIT Press
ISBN: 026218253X
Category : Computers
Languages : en
Pages : 266
Book Description
A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.
Lectures on Gaussian Processes
Author: Mikhail Lifshits
Publisher: Springer Science & Business Media
ISBN: 3642249396
Category : Mathematics
Languages : en
Pages : 129
Book Description
Gaussian processes can be viewed as a far-reaching infinite-dimensional extension of classical normal random variables. Their theory presents a powerful range of tools for probabilistic modelling in various academic and technical domains such as Statistics, Forecasting, Finance, Information Transmission, Machine Learning - to mention just a few. The objective of these Briefs is to present a quick and condensed treatment of the core theory that a reader must understand in order to make his own independent contributions. The primary intended readership are PhD/Masters students and researchers working in pure or applied mathematics. The first chapters introduce essentials of the classical theory of Gaussian processes and measures with the core notions of reproducing kernel, integral representation, isoperimetric property, large deviation principle. The brevity being a priority for teaching and learning purposes, certain technical details and proofs are omitted. The later chapters touch important recent issues not sufficiently reflected in the literature, such as small deviations, expansions, and quantization of processes. In university teaching, one can build a one-semester advanced course upon these Briefs.
Publisher: Springer Science & Business Media
ISBN: 3642249396
Category : Mathematics
Languages : en
Pages : 129
Book Description
Gaussian processes can be viewed as a far-reaching infinite-dimensional extension of classical normal random variables. Their theory presents a powerful range of tools for probabilistic modelling in various academic and technical domains such as Statistics, Forecasting, Finance, Information Transmission, Machine Learning - to mention just a few. The objective of these Briefs is to present a quick and condensed treatment of the core theory that a reader must understand in order to make his own independent contributions. The primary intended readership are PhD/Masters students and researchers working in pure or applied mathematics. The first chapters introduce essentials of the classical theory of Gaussian processes and measures with the core notions of reproducing kernel, integral representation, isoperimetric property, large deviation principle. The brevity being a priority for teaching and learning purposes, certain technical details and proofs are omitted. The later chapters touch important recent issues not sufficiently reflected in the literature, such as small deviations, expansions, and quantization of processes. In university teaching, one can build a one-semester advanced course upon these Briefs.
Gaussian Processes, Function Theory, and the Inverse Spectral Problem
Author: Harry Dym
Publisher: Courier Corporation
ISBN: 048646279X
Category : Mathematics
Languages : en
Pages : 354
Book Description
This text offers background in function theory, Hardy functions, and probability as preparation for surveys of Gaussian processes, strings and spectral functions, and strings and spaces of integral functions. It addresses the relationship between the past and the future of a real, one-dimensional, stationary Gaussian process. 1976 edition.
Publisher: Courier Corporation
ISBN: 048646279X
Category : Mathematics
Languages : en
Pages : 354
Book Description
This text offers background in function theory, Hardy functions, and probability as preparation for surveys of Gaussian processes, strings and spectral functions, and strings and spaces of integral functions. It addresses the relationship between the past and the future of a real, one-dimensional, stationary Gaussian process. 1976 edition.
Modelling and Control of Dynamic Systems Using Gaussian Process Models
Author: Juš Kocijan
Publisher: Springer
ISBN: 3319210211
Category : Technology & Engineering
Languages : en
Pages : 281
Book Description
This monograph opens up new horizons for engineers and researchers in academia and in industry dealing with or interested in new developments in the field of system identification and control. It emphasizes guidelines for working solutions and practical advice for their implementation rather than the theoretical background of Gaussian process (GP) models. The book demonstrates the potential of this recent development in probabilistic machine-learning methods and gives the reader an intuitive understanding of the topic. The current state of the art is treated along with possible future directions for research. Systems control design relies on mathematical models and these may be developed from measurement data. This process of system identification, when based on GP models, can play an integral part of control design in data-based control and its description as such is an essential aspect of the text. The background of GP regression is introduced first with system identification and incorporation of prior knowledge then leading into full-blown control. The book is illustrated by extensive use of examples, line drawings, and graphical presentation of computer-simulation results and plant measurements. The research results presented are applied in real-life case studies drawn from successful applications including: a gas–liquid separator control; urban-traffic signal modelling and reconstruction; and prediction of atmospheric ozone concentration. A MATLAB® toolbox, for identification and simulation of dynamic GP models is provided for download.
Publisher: Springer
ISBN: 3319210211
Category : Technology & Engineering
Languages : en
Pages : 281
Book Description
This monograph opens up new horizons for engineers and researchers in academia and in industry dealing with or interested in new developments in the field of system identification and control. It emphasizes guidelines for working solutions and practical advice for their implementation rather than the theoretical background of Gaussian process (GP) models. The book demonstrates the potential of this recent development in probabilistic machine-learning methods and gives the reader an intuitive understanding of the topic. The current state of the art is treated along with possible future directions for research. Systems control design relies on mathematical models and these may be developed from measurement data. This process of system identification, when based on GP models, can play an integral part of control design in data-based control and its description as such is an essential aspect of the text. The background of GP regression is introduced first with system identification and incorporation of prior knowledge then leading into full-blown control. The book is illustrated by extensive use of examples, line drawings, and graphical presentation of computer-simulation results and plant measurements. The research results presented are applied in real-life case studies drawn from successful applications including: a gas–liquid separator control; urban-traffic signal modelling and reconstruction; and prediction of atmospheric ozone concentration. A MATLAB® toolbox, for identification and simulation of dynamic GP models is provided for download.
Markov Processes, Gaussian Processes, and Local Times
Author: Michael B. Marcus
Publisher: Cambridge University Press
ISBN: 1139458833
Category : Mathematics
Languages : en
Pages : 4
Book Description
This book was first published in 2006. Written by two of the foremost researchers in the field, this book studies the local times of Markov processes by employing isomorphism theorems that relate them to certain associated Gaussian processes. It builds to this material through self-contained but harmonized 'mini-courses' on the relevant ingredients, which assume only knowledge of measure-theoretic probability. The streamlined selection of topics creates an easy entrance for students and experts in related fields. The book starts by developing the fundamentals of Markov process theory and then of Gaussian process theory, including sample path properties. It then proceeds to more advanced results, bringing the reader to the heart of contemporary research. It presents the remarkable isomorphism theorems of Dynkin and Eisenbaum and then shows how they can be applied to obtain new properties of Markov processes by using well-established techniques in Gaussian process theory. This original, readable book will appeal to both researchers and advanced graduate students.
Publisher: Cambridge University Press
ISBN: 1139458833
Category : Mathematics
Languages : en
Pages : 4
Book Description
This book was first published in 2006. Written by two of the foremost researchers in the field, this book studies the local times of Markov processes by employing isomorphism theorems that relate them to certain associated Gaussian processes. It builds to this material through self-contained but harmonized 'mini-courses' on the relevant ingredients, which assume only knowledge of measure-theoretic probability. The streamlined selection of topics creates an easy entrance for students and experts in related fields. The book starts by developing the fundamentals of Markov process theory and then of Gaussian process theory, including sample path properties. It then proceeds to more advanced results, bringing the reader to the heart of contemporary research. It presents the remarkable isomorphism theorems of Dynkin and Eisenbaum and then shows how they can be applied to obtain new properties of Markov processes by using well-established techniques in Gaussian process theory. This original, readable book will appeal to both researchers and advanced graduate students.
Gaussian Random Processes
Author: I.A. Ibragimov
Publisher: Springer Science & Business Media
ISBN: 1461262755
Category : Mathematics
Languages : en
Pages : 285
Book Description
The book deals mainly with three problems involving Gaussian stationary processes. The first problem consists of clarifying the conditions for mutual absolute continuity (equivalence) of probability distributions of a "random process segment" and of finding effective formulas for densities of the equiva lent distributions. Our second problem is to describe the classes of spectral measures corresponding in some sense to regular stationary processes (in par ticular, satisfying the well-known "strong mixing condition") as well as to describe the subclasses associated with "mixing rate". The third problem involves estimation of an unknown mean value of a random process, this random process being stationary except for its mean, i. e. , it is the problem of "distinguishing a signal from stationary noise". Furthermore, we give here auxiliary information (on distributions in Hilbert spaces, properties of sam ple functions, theorems on functions of a complex variable, etc. ). Since 1958 many mathematicians have studied the problem of equivalence of various infinite-dimensional Gaussian distributions (detailed and sys tematic presentation of the basic results can be found, for instance, in [23]). In this book we have considered Gaussian stationary processes and arrived, we believe, at rather definite solutions. The second problem mentioned above is closely related with problems involving ergodic theory of Gaussian dynamic systems as well as prediction theory of stationary processes.
Publisher: Springer Science & Business Media
ISBN: 1461262755
Category : Mathematics
Languages : en
Pages : 285
Book Description
The book deals mainly with three problems involving Gaussian stationary processes. The first problem consists of clarifying the conditions for mutual absolute continuity (equivalence) of probability distributions of a "random process segment" and of finding effective formulas for densities of the equiva lent distributions. Our second problem is to describe the classes of spectral measures corresponding in some sense to regular stationary processes (in par ticular, satisfying the well-known "strong mixing condition") as well as to describe the subclasses associated with "mixing rate". The third problem involves estimation of an unknown mean value of a random process, this random process being stationary except for its mean, i. e. , it is the problem of "distinguishing a signal from stationary noise". Furthermore, we give here auxiliary information (on distributions in Hilbert spaces, properties of sam ple functions, theorems on functions of a complex variable, etc. ). Since 1958 many mathematicians have studied the problem of equivalence of various infinite-dimensional Gaussian distributions (detailed and sys tematic presentation of the basic results can be found, for instance, in [23]). In this book we have considered Gaussian stationary processes and arrived, we believe, at rather definite solutions. The second problem mentioned above is closely related with problems involving ergodic theory of Gaussian dynamic systems as well as prediction theory of stationary processes.
Stochastic Analysis of Mixed Fractional Gaussian Processes
Author: Yuliya Mishura
Publisher: Elsevier
ISBN: 0081023634
Category : Mathematics
Languages : en
Pages : 212
Book Description
Stochastic Analysis of Mixed Fractional Gaussian Processes presents the main tools necessary to characterize Gaussian processes. The book focuses on the particular case of the linear combination of independent fractional and sub-fractional Brownian motions with different Hurst indices. Stochastic integration with respect to these processes is considered, as is the study of the existence and uniqueness of solutions of related SDE's. Applications in finance and statistics are also explored, with each chapter supplying a number of exercises to illustrate key concepts. - Presents both mixed fractional and sub-fractional Brownian motions - Provides an accessible description for mixed fractional gaussian processes that is ideal for Master's and PhD students - Includes different Hurst indices
Publisher: Elsevier
ISBN: 0081023634
Category : Mathematics
Languages : en
Pages : 212
Book Description
Stochastic Analysis of Mixed Fractional Gaussian Processes presents the main tools necessary to characterize Gaussian processes. The book focuses on the particular case of the linear combination of independent fractional and sub-fractional Brownian motions with different Hurst indices. Stochastic integration with respect to these processes is considered, as is the study of the existence and uniqueness of solutions of related SDE's. Applications in finance and statistics are also explored, with each chapter supplying a number of exercises to illustrate key concepts. - Presents both mixed fractional and sub-fractional Brownian motions - Provides an accessible description for mixed fractional gaussian processes that is ideal for Master's and PhD students - Includes different Hurst indices
Gaussian Processes
Author: Takeyuki Hida
Publisher: American Mathematical Soc.
ISBN: 9780821887639
Category : Mathematics
Languages : en
Pages : 208
Book Description
Aimed at students and researchers in mathematics, communications engineering, and economics, this book describes the probabilistic structure of a Gaussian process in terms of its canonical representation (or its innovation process). Multiple Markov properties of a Gaussian process and equivalence problems of Gaussian processes are clearly presented. The authors' approach is unique, involving causality in time evolution and information-theoretic aspects. Because the book is self-contained and only requires background in the fundamentals of probability theory and measure theory, it would be suitable as a textbook at the senior undergraduate or graduate level.
Publisher: American Mathematical Soc.
ISBN: 9780821887639
Category : Mathematics
Languages : en
Pages : 208
Book Description
Aimed at students and researchers in mathematics, communications engineering, and economics, this book describes the probabilistic structure of a Gaussian process in terms of its canonical representation (or its innovation process). Multiple Markov properties of a Gaussian process and equivalence problems of Gaussian processes are clearly presented. The authors' approach is unique, involving causality in time evolution and information-theoretic aspects. Because the book is self-contained and only requires background in the fundamentals of probability theory and measure theory, it would be suitable as a textbook at the senior undergraduate or graduate level.
Surrogates
Author: Robert B. Gramacy
Publisher: CRC Press
ISBN: 1000766209
Category : Mathematics
Languages : en
Pages : 560
Book Description
Computer simulation experiments are essential to modern scientific discovery, whether that be in physics, chemistry, biology, epidemiology, ecology, engineering, etc. Surrogates are meta-models of computer simulations, used to solve mathematical models that are too intricate to be worked by hand. Gaussian process (GP) regression is a supremely flexible tool for the analysis of computer simulation experiments. This book presents an applied introduction to GP regression for modelling and optimization of computer simulation experiments. Features: • Emphasis on methods, applications, and reproducibility. • R code is integrated throughout for application of the methods. • Includes more than 200 full colour figures. • Includes many exercises to supplement understanding, with separate solutions available from the author. • Supported by a website with full code available to reproduce all methods and examples. The book is primarily designed as a textbook for postgraduate students studying GP regression from mathematics, statistics, computer science, and engineering. Given the breadth of examples, it could also be used by researchers from these fields, as well as from economics, life science, social science, etc.
Publisher: CRC Press
ISBN: 1000766209
Category : Mathematics
Languages : en
Pages : 560
Book Description
Computer simulation experiments are essential to modern scientific discovery, whether that be in physics, chemistry, biology, epidemiology, ecology, engineering, etc. Surrogates are meta-models of computer simulations, used to solve mathematical models that are too intricate to be worked by hand. Gaussian process (GP) regression is a supremely flexible tool for the analysis of computer simulation experiments. This book presents an applied introduction to GP regression for modelling and optimization of computer simulation experiments. Features: • Emphasis on methods, applications, and reproducibility. • R code is integrated throughout for application of the methods. • Includes more than 200 full colour figures. • Includes many exercises to supplement understanding, with separate solutions available from the author. • Supported by a website with full code available to reproduce all methods and examples. The book is primarily designed as a textbook for postgraduate students studying GP regression from mathematics, statistics, computer science, and engineering. Given the breadth of examples, it could also be used by researchers from these fields, as well as from economics, life science, social science, etc.
Gaussian Process Regression Analysis for Functional Data
Author: Jian Qing Shi
Publisher: CRC Press
ISBN: 1439837740
Category : Mathematics
Languages : en
Pages : 214
Book Description
Gaussian Process Regression Analysis for Functional Data presents nonparametric statistical methods for functional regression analysis, specifically the methods based on a Gaussian process prior in a functional space. The authors focus on problems involving functional response variables and mixed covariates of functional and scalar variables.Coveri
Publisher: CRC Press
ISBN: 1439837740
Category : Mathematics
Languages : en
Pages : 214
Book Description
Gaussian Process Regression Analysis for Functional Data presents nonparametric statistical methods for functional regression analysis, specifically the methods based on a Gaussian process prior in a functional space. The authors focus on problems involving functional response variables and mixed covariates of functional and scalar variables.Coveri