Author: M.A. Nettleton
Publisher: Springer Science & Business Media
ISBN: 9400931492
Category : Medical
Languages : en
Pages : 266
Book Description
My introduction to the fascinating phenomena associated with detonation waves came through appointments as an external fellow at the Department of Physics, University College of Wales, and at the Department of Mechanical Engineering, University of Leeds. Very special thanks for his accurate guidance through the large body of information on gaseous detonations are due to Professor D. H. Edwards of University College of Wales. Indeed, the onerous task of concisely enumerating the key features of unidimensional theories of detonations was undertaken by him, and Chapter 2 is based on his initial draft. When the text strays to the use of we, it is a deserved acknow ledgement of his contribution. Again, I should like to thank Professor D. Bradley of Leeds University for his enthusiastic encouragement of my efforts at developing a model of the composition limits of detonability through a relationship between run-up distance and composition of the mixture. The text has been prepared in the context of these fellowships, and I am grateful to the Central Electricity Generating Board for its permission to accept these appointments.
Gaseous Detonations
Author: M.A. Nettleton
Publisher: Springer Science & Business Media
ISBN: 9400931492
Category : Medical
Languages : en
Pages : 266
Book Description
My introduction to the fascinating phenomena associated with detonation waves came through appointments as an external fellow at the Department of Physics, University College of Wales, and at the Department of Mechanical Engineering, University of Leeds. Very special thanks for his accurate guidance through the large body of information on gaseous detonations are due to Professor D. H. Edwards of University College of Wales. Indeed, the onerous task of concisely enumerating the key features of unidimensional theories of detonations was undertaken by him, and Chapter 2 is based on his initial draft. When the text strays to the use of we, it is a deserved acknow ledgement of his contribution. Again, I should like to thank Professor D. Bradley of Leeds University for his enthusiastic encouragement of my efforts at developing a model of the composition limits of detonability through a relationship between run-up distance and composition of the mixture. The text has been prepared in the context of these fellowships, and I am grateful to the Central Electricity Generating Board for its permission to accept these appointments.
Publisher: Springer Science & Business Media
ISBN: 9400931492
Category : Medical
Languages : en
Pages : 266
Book Description
My introduction to the fascinating phenomena associated with detonation waves came through appointments as an external fellow at the Department of Physics, University College of Wales, and at the Department of Mechanical Engineering, University of Leeds. Very special thanks for his accurate guidance through the large body of information on gaseous detonations are due to Professor D. H. Edwards of University College of Wales. Indeed, the onerous task of concisely enumerating the key features of unidimensional theories of detonations was undertaken by him, and Chapter 2 is based on his initial draft. When the text strays to the use of we, it is a deserved acknow ledgement of his contribution. Again, I should like to thank Professor D. Bradley of Leeds University for his enthusiastic encouragement of my efforts at developing a model of the composition limits of detonability through a relationship between run-up distance and composition of the mixture. The text has been prepared in the context of these fellowships, and I am grateful to the Central Electricity Generating Board for its permission to accept these appointments.
Dynamics of Detonations and Explosions
Author:
Publisher: AIAA
ISBN: 9781600863875
Category : Detonation waves
Languages : en
Pages : 422
Book Description
Publisher: AIAA
ISBN: 9781600863875
Category : Detonation waves
Languages : en
Pages : 422
Book Description
Combustion, Flames and Explosions of Gases
Author: Bernard Lewis
Publisher: Academic Press
ISBN: 1483258394
Category : Science
Languages : en
Pages : 754
Book Description
Combustion, Flames, and Explosions of Gases, Second Edition focuses on the processes, methodologies, and reactions involved in combustion phenomena. The publication first offers information on theoretical foundations, reaction between hydrogen and oxygen, and reaction between carbon monoxide and oxygen. Discussions focus on the fundamentals of reaction kinetics, elementary and complex reactions in gases, thermal reaction, and combined hydrogen-carbon monoxide-oxygen reaction. The text then elaborates on the reaction between hydrocarbons and oxygen and combustion waves in laminar flow. The manuscript tackles combustion waves in turbulent flow and air entrainment and burning of jets of fuel gases. Topics include effect of turbulence spectrum and turbulent wrinkling on combustion wave propagation; ignition of high-velocity streams by hot solid bodies; burners with primary air entrainment; and description of jet flames. The book then takes a look at detonation waves in gases; emission spectra, ionization, and electric-field effects in flames; and methods of flame photography and pressure recording. The publication is a valuable reference for readers interested in combustion phenomena.
Publisher: Academic Press
ISBN: 1483258394
Category : Science
Languages : en
Pages : 754
Book Description
Combustion, Flames, and Explosions of Gases, Second Edition focuses on the processes, methodologies, and reactions involved in combustion phenomena. The publication first offers information on theoretical foundations, reaction between hydrogen and oxygen, and reaction between carbon monoxide and oxygen. Discussions focus on the fundamentals of reaction kinetics, elementary and complex reactions in gases, thermal reaction, and combined hydrogen-carbon monoxide-oxygen reaction. The text then elaborates on the reaction between hydrocarbons and oxygen and combustion waves in laminar flow. The manuscript tackles combustion waves in turbulent flow and air entrainment and burning of jets of fuel gases. Topics include effect of turbulence spectrum and turbulent wrinkling on combustion wave propagation; ignition of high-velocity streams by hot solid bodies; burners with primary air entrainment; and description of jet flames. The book then takes a look at detonation waves in gases; emission spectra, ionization, and electric-field effects in flames; and methods of flame photography and pressure recording. The publication is a valuable reference for readers interested in combustion phenomena.
Gaseous Detonation Physics and Its Universal Framework Theory
Author: Zonglin Jiang
Publisher: Springer Nature
ISBN: 9811970025
Category : Science
Languages : en
Pages : 281
Book Description
This book highlights the theories and research progress in gaseous detonation research, and proposes a universal framework theory that overcomes the current research limitations. Gaseous detonation is an extremely fast type of combustion that propagates at supersonic speed in premixed combustible gas. Being self-sustaining and self-organizing with the unique nature of pressure gaining, gaseous detonation and its gas dynamics has been an interdisciplinary frontier for decades. The research of detonation enjoyed its early success from the development of the CJ theory and ZND modeling, but phenomenon is far from being understood quantitatively, and the development of theories to predict the three-dimensional cellular structure remains a formidable task, being essentially a problem in high-speed compressible reacting flow. This theory proposed by the authors’ research group breaks down the limitation of the one-dimensional steady flow hypothesis of the early theories, successfully correlating the propagation and initiation processes of gaseous detonation, and realizing the unified expression of the three-dimensional structure of cell detonation. The book and the proposed open framework is of high value for researchers in conventional applications such as coal mine explosions and chemical plant accidents, and state-of-the-art research fields such as supernova explosion, new aerospace propulsion engines, and detonation-driven hypersonic testing facilities. It is also a driving force for future research of detonation.
Publisher: Springer Nature
ISBN: 9811970025
Category : Science
Languages : en
Pages : 281
Book Description
This book highlights the theories and research progress in gaseous detonation research, and proposes a universal framework theory that overcomes the current research limitations. Gaseous detonation is an extremely fast type of combustion that propagates at supersonic speed in premixed combustible gas. Being self-sustaining and self-organizing with the unique nature of pressure gaining, gaseous detonation and its gas dynamics has been an interdisciplinary frontier for decades. The research of detonation enjoyed its early success from the development of the CJ theory and ZND modeling, but phenomenon is far from being understood quantitatively, and the development of theories to predict the three-dimensional cellular structure remains a formidable task, being essentially a problem in high-speed compressible reacting flow. This theory proposed by the authors’ research group breaks down the limitation of the one-dimensional steady flow hypothesis of the early theories, successfully correlating the propagation and initiation processes of gaseous detonation, and realizing the unified expression of the three-dimensional structure of cell detonation. The book and the proposed open framework is of high value for researchers in conventional applications such as coal mine explosions and chemical plant accidents, and state-of-the-art research fields such as supernova explosion, new aerospace propulsion engines, and detonation-driven hypersonic testing facilities. It is also a driving force for future research of detonation.
Dynamics of Shock Waves, Explosions, and Detonations
Author: J. Raymond Bowen
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 632
Book Description
Publisher:
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 632
Book Description
Combustion and Fuels
Author: Miltiadis Papalexandris
Publisher: Presses universitaires de Louvain
ISBN: 2875589792
Category : Science
Languages : en
Pages : 190
Book Description
This is the textbook for the master's course Combustion and Fuels that the author teaches at the Louvain School of Engineering of UCLouvain. The subjects contained herein are the following: origin and composition of fossil fuels, stoichiometry and thermochemistry of combustion, chemical kinetics, governing equations of reacting flows, laminar premixed flames and turbulent premixed flames. Emphasis is placed on the presentation and analysis of the basic concepts and physico-chemical mechanisms underpinning combustion. Further, particular attention has been paid to render these notes self-contained. A list of review questions and exercises has been included at the end of each chapter. This book is intended for master’s or advanced undergraduate students in engineering, physics, chemistry or applied mathematics. It is assumed that the reader is familiar with the basic notions of thermodynamics and fluid mechanics.
Publisher: Presses universitaires de Louvain
ISBN: 2875589792
Category : Science
Languages : en
Pages : 190
Book Description
This is the textbook for the master's course Combustion and Fuels that the author teaches at the Louvain School of Engineering of UCLouvain. The subjects contained herein are the following: origin and composition of fossil fuels, stoichiometry and thermochemistry of combustion, chemical kinetics, governing equations of reacting flows, laminar premixed flames and turbulent premixed flames. Emphasis is placed on the presentation and analysis of the basic concepts and physico-chemical mechanisms underpinning combustion. Further, particular attention has been paid to render these notes self-contained. A list of review questions and exercises has been included at the end of each chapter. This book is intended for master’s or advanced undergraduate students in engineering, physics, chemistry or applied mathematics. It is assumed that the reader is familiar with the basic notions of thermodynamics and fluid mechanics.
Dynamic Structure of Detonation in Gaseous and Dispersed Media
Author: A.A. Borissov
Publisher: Springer Science & Business Media
ISBN: 9401135487
Category : Technology & Engineering
Languages : en
Pages : 321
Book Description
Of late the demands of industry in creating new composite and functional materials with present properties stimulated an increased interest to the investigation of processes which occur in the detonation technologies of complex chemical composition with an additive of disperse particles. The collection includes a series of papers presented at the 3d International Conference "Lavrentyev Readings on Mathematics, Mechanics, and Physics" (Novosibirsk, 1990),was held by the Hydrodynamics Institute under the support of the Presidium of the Siberian Branch of the USSR Academy of Sciences to stimulate the international cooperation of the leading international centers. In the framework of this Conference the Round Table seminar was held by Prof. A. Borissov and Prof. V. Mi trofanov devoted to "Dynamic Structure of Detonation in Gaseous and Dispersed Media". The idea to hold such Round Table was supported by Chairman of Organizing Committee academician Prof. V.Titov from Hydrodynamics Institute, and academician Prof. V. Nakoryakov and also his Institute of Thermophysics. The main ideas discussed at the Round Table were presented in the form of papers which reflected present situation of the problem of dynamic structure of the detonation waves in gaseous and dispersed media. The basic experimental facts concerning of complicated mul ti dimensional non-stationary structure both of the detonation wave and its front surface, generation of the cell structure, the effect of transverse waves, obstacles, channel geometry etc. on the transition from dynamic regime to stationary structure are represented in the fist three papers.
Publisher: Springer Science & Business Media
ISBN: 9401135487
Category : Technology & Engineering
Languages : en
Pages : 321
Book Description
Of late the demands of industry in creating new composite and functional materials with present properties stimulated an increased interest to the investigation of processes which occur in the detonation technologies of complex chemical composition with an additive of disperse particles. The collection includes a series of papers presented at the 3d International Conference "Lavrentyev Readings on Mathematics, Mechanics, and Physics" (Novosibirsk, 1990),was held by the Hydrodynamics Institute under the support of the Presidium of the Siberian Branch of the USSR Academy of Sciences to stimulate the international cooperation of the leading international centers. In the framework of this Conference the Round Table seminar was held by Prof. A. Borissov and Prof. V. Mi trofanov devoted to "Dynamic Structure of Detonation in Gaseous and Dispersed Media". The idea to hold such Round Table was supported by Chairman of Organizing Committee academician Prof. V.Titov from Hydrodynamics Institute, and academician Prof. V. Nakoryakov and also his Institute of Thermophysics. The main ideas discussed at the Round Table were presented in the form of papers which reflected present situation of the problem of dynamic structure of the detonation waves in gaseous and dispersed media. The basic experimental facts concerning of complicated mul ti dimensional non-stationary structure both of the detonation wave and its front surface, generation of the cell structure, the effect of transverse waves, obstacles, channel geometry etc. on the transition from dynamic regime to stationary structure are represented in the fist three papers.
The Detonation Phenomenon
Author: John H. S. Lee
Publisher: Cambridge University Press
ISBN: 9780521897235
Category : Technology & Engineering
Languages : en
Pages : 400
Book Description
This book introduces the detonation phenomenon in explosives. It is ideal for engineers and graduate students with a background in thermodynamics and fluid mechanics. The material is mostly qualitative, aiming to illustrate the physical aspects of the phenomenon. Classical idealized theories of detonation waves are presented first. These permit detonation speed, gas properties ahead and behind the detonation wave, and the distribution of fluid properties within the detonation wave itself to be determined. Subsequent chapters describe in detail the real unstable structure of a detonation wave. One-, two-, and three-dimensional computer simulations are presented along with experimental results using various experimental techniques. The important effects of confinement and boundary conditions and their influence on the propagation of a detonation are also discussed. The final chapters cover the various ways detonation waves can be formed and provide a review of the outstanding problems and future directions in detonation research.
Publisher: Cambridge University Press
ISBN: 9780521897235
Category : Technology & Engineering
Languages : en
Pages : 400
Book Description
This book introduces the detonation phenomenon in explosives. It is ideal for engineers and graduate students with a background in thermodynamics and fluid mechanics. The material is mostly qualitative, aiming to illustrate the physical aspects of the phenomenon. Classical idealized theories of detonation waves are presented first. These permit detonation speed, gas properties ahead and behind the detonation wave, and the distribution of fluid properties within the detonation wave itself to be determined. Subsequent chapters describe in detail the real unstable structure of a detonation wave. One-, two-, and three-dimensional computer simulations are presented along with experimental results using various experimental techniques. The important effects of confinement and boundary conditions and their influence on the propagation of a detonation are also discussed. The final chapters cover the various ways detonation waves can be formed and provide a review of the outstanding problems and future directions in detonation research.
Modeling Explosions and Blast Waves
Author: K. Ramamurthi
Publisher: Springer Nature
ISBN: 3030743381
Category : Technology & Engineering
Languages : en
Pages : 408
Book Description
b="" The book provides a concise description of the physical processes and mathematical models for explosions and formation of blast waves from explosions. The contents focus on quantitatively determining the energy released in the different types of explosions and the destructive blast waves that are generated. The contribution of flames, detonations and other physical processes to the explosion phenomenon is dealt with in detail. Gaseous and condensed phase explosions are discussed and the yield of explosions with their TNT equivalence is determined. Time scales involved in the explosion process and the scaling procedure are ascertained. Explosions over the ground, in water, and the interaction of explosions with objects are examined. In order to keep the text easily readable, the detailed derivation of the mathematical equations is given in the seven appendices at the end of the book. Case studies of various explosions are investigated and simple problems and their solutions are provided for the different topics to assist the reader in internalizing the explosion process. The book is a useful reference for professionals and academics in aeronautics, mechanical, civil and chemical engineering and for personnel working in explosive manufacture and high-energy materials, armaments, space, defense, and industrial and fire safety.
Publisher: Springer Nature
ISBN: 3030743381
Category : Technology & Engineering
Languages : en
Pages : 408
Book Description
b="" The book provides a concise description of the physical processes and mathematical models for explosions and formation of blast waves from explosions. The contents focus on quantitatively determining the energy released in the different types of explosions and the destructive blast waves that are generated. The contribution of flames, detonations and other physical processes to the explosion phenomenon is dealt with in detail. Gaseous and condensed phase explosions are discussed and the yield of explosions with their TNT equivalence is determined. Time scales involved in the explosion process and the scaling procedure are ascertained. Explosions over the ground, in water, and the interaction of explosions with objects are examined. In order to keep the text easily readable, the detailed derivation of the mathematical equations is given in the seven appendices at the end of the book. Case studies of various explosions are investigated and simple problems and their solutions are provided for the different topics to assist the reader in internalizing the explosion process. The book is a useful reference for professionals and academics in aeronautics, mechanical, civil and chemical engineering and for personnel working in explosive manufacture and high-energy materials, armaments, space, defense, and industrial and fire safety.
Combustion Theory
Author: Forman A. Williams
Publisher: CRC Press
ISBN: 0429973683
Category : Science
Languages : en
Pages : 549
Book Description
Combustion Theory delves deeper into the science of combustion than most other texts and gives insight into combustions from a molecular and a continuum point of view. The book presents derivations of the basic equations of combustion theory and contains appendices on the background of subjects of thermodynamics, chemical kinetics, fluid dynamics, and transport processes. Diffusion flames, reactions in flows with negligible transport and the theory of pre-mixed flames are treated, as are detonation phenomena, the combustion of solid propellents, and ignition, extinction, and flamibility pehnomena.
Publisher: CRC Press
ISBN: 0429973683
Category : Science
Languages : en
Pages : 549
Book Description
Combustion Theory delves deeper into the science of combustion than most other texts and gives insight into combustions from a molecular and a continuum point of view. The book presents derivations of the basic equations of combustion theory and contains appendices on the background of subjects of thermodynamics, chemical kinetics, fluid dynamics, and transport processes. Diffusion flames, reactions in flows with negligible transport and the theory of pre-mixed flames are treated, as are detonation phenomena, the combustion of solid propellents, and ignition, extinction, and flamibility pehnomena.