Author: Clifford K. Ho
Publisher: Springer
ISBN: 9789048170029
Category : Science
Languages : en
Pages : 0
Book Description
CLIFFORD K. HOAND STEPHEN W. WEBB Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185, USA Gas and vapor transport in porous media occur in a number of important applications includingdryingofindustrialandfoodproducts,oilandgasexploration,environm- tal remediation of contaminated sites, and carbon sequestration. Understanding the fundamental mechanisms and processes of gas and vapor transport in porous media allows models to be used to evaluate and optimize the performance and design of these systems. In this book, gas and vapor are distinguished by their available states at stan- ? dard temperature and pressure (20 C, 101 kPa). If the gas-phase constituent can also exist as a liquid phase at standard temperature and pressure (e. g. , water, ethanol, toluene, trichlorothylene), it is considered a vapor. If the gas-phase constituent is non-condensable at standard temperature and pressure (e. g. , oxygen, carbon di- ide, helium, hydrogen, propane), it is considered a gas. The distinction is important because different processes affect the transport and behavior of gases and vapors in porous media. For example, mechanisms specific to vapors include vapor-pressure lowering and enhanced vapor diffusion, which are caused by the presence of a g- phase constituent interacting with its liquid phase in an unsaturated porous media. In addition, the “heat-pipe” exploits isothermal latent heat exchange during evaporation and condensation to effectively transfer heat in designed and natural systems.
Gas Transport in Porous Media
Author: Clifford K. Ho
Publisher: Springer
ISBN: 9789048170029
Category : Science
Languages : en
Pages : 0
Book Description
CLIFFORD K. HOAND STEPHEN W. WEBB Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185, USA Gas and vapor transport in porous media occur in a number of important applications includingdryingofindustrialandfoodproducts,oilandgasexploration,environm- tal remediation of contaminated sites, and carbon sequestration. Understanding the fundamental mechanisms and processes of gas and vapor transport in porous media allows models to be used to evaluate and optimize the performance and design of these systems. In this book, gas and vapor are distinguished by their available states at stan- ? dard temperature and pressure (20 C, 101 kPa). If the gas-phase constituent can also exist as a liquid phase at standard temperature and pressure (e. g. , water, ethanol, toluene, trichlorothylene), it is considered a vapor. If the gas-phase constituent is non-condensable at standard temperature and pressure (e. g. , oxygen, carbon di- ide, helium, hydrogen, propane), it is considered a gas. The distinction is important because different processes affect the transport and behavior of gases and vapors in porous media. For example, mechanisms specific to vapors include vapor-pressure lowering and enhanced vapor diffusion, which are caused by the presence of a g- phase constituent interacting with its liquid phase in an unsaturated porous media. In addition, the “heat-pipe” exploits isothermal latent heat exchange during evaporation and condensation to effectively transfer heat in designed and natural systems.
Publisher: Springer
ISBN: 9789048170029
Category : Science
Languages : en
Pages : 0
Book Description
CLIFFORD K. HOAND STEPHEN W. WEBB Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185, USA Gas and vapor transport in porous media occur in a number of important applications includingdryingofindustrialandfoodproducts,oilandgasexploration,environm- tal remediation of contaminated sites, and carbon sequestration. Understanding the fundamental mechanisms and processes of gas and vapor transport in porous media allows models to be used to evaluate and optimize the performance and design of these systems. In this book, gas and vapor are distinguished by their available states at stan- ? dard temperature and pressure (20 C, 101 kPa). If the gas-phase constituent can also exist as a liquid phase at standard temperature and pressure (e. g. , water, ethanol, toluene, trichlorothylene), it is considered a vapor. If the gas-phase constituent is non-condensable at standard temperature and pressure (e. g. , oxygen, carbon di- ide, helium, hydrogen, propane), it is considered a gas. The distinction is important because different processes affect the transport and behavior of gases and vapors in porous media. For example, mechanisms specific to vapors include vapor-pressure lowering and enhanced vapor diffusion, which are caused by the presence of a g- phase constituent interacting with its liquid phase in an unsaturated porous media. In addition, the “heat-pipe” exploits isothermal latent heat exchange during evaporation and condensation to effectively transfer heat in designed and natural systems.
Gas Transport in Porous Media
Author: Edward Allen Mason
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 212
Book Description
This monograph gives an historical account of the development of the dusty-gas model for the description of gas transport in porous media, and describes the model and its applications in sufficient detail that it can be employed in engineering practice.
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 212
Book Description
This monograph gives an historical account of the development of the dusty-gas model for the description of gas transport in porous media, and describes the model and its applications in sufficient detail that it can be employed in engineering practice.
Porous Media Transport Phenomena
Author: Faruk Civan
Publisher: John Wiley & Sons
ISBN: 1118086805
Category : Technology & Engineering
Languages : en
Pages : 443
Book Description
The book that makes transport in porous media accessible to students and researchers alike Porous Media Transport Phenomena covers the general theories behind flow and transport in porous media a solid permeated by a network of pores filled with fluid which encompasses rocks, biological tissues, ceramics, and much more. Designed for use in graduate courses in various disciplines involving fluids in porous materials, and as a reference for practitioners in the field, the text includes exercises and practical applications while avoiding the complex math found in other books, allowing the reader to focus on the central elements of the topic. Covering general porous media applications, including the effects of temperature and particle migration, and placing an emphasis on energy resource development, the book provides an overview of mass, momentum, and energy conservation equations, and their applications in engineered and natural porous media for general applications. Offering a multidisciplinary approach to transport in porous media, material is presented in a uniform format with consistent SI units. An indispensable resource on an extremely wide and varied topic drawn from numerous engineering fields, Porous Media Transport Phenomena includes a solutions manual for all exercises found in the book, additional questions for study purposes, and PowerPoint slides that follow the order of the text.
Publisher: John Wiley & Sons
ISBN: 1118086805
Category : Technology & Engineering
Languages : en
Pages : 443
Book Description
The book that makes transport in porous media accessible to students and researchers alike Porous Media Transport Phenomena covers the general theories behind flow and transport in porous media a solid permeated by a network of pores filled with fluid which encompasses rocks, biological tissues, ceramics, and much more. Designed for use in graduate courses in various disciplines involving fluids in porous materials, and as a reference for practitioners in the field, the text includes exercises and practical applications while avoiding the complex math found in other books, allowing the reader to focus on the central elements of the topic. Covering general porous media applications, including the effects of temperature and particle migration, and placing an emphasis on energy resource development, the book provides an overview of mass, momentum, and energy conservation equations, and their applications in engineered and natural porous media for general applications. Offering a multidisciplinary approach to transport in porous media, material is presented in a uniform format with consistent SI units. An indispensable resource on an extremely wide and varied topic drawn from numerous engineering fields, Porous Media Transport Phenomena includes a solutions manual for all exercises found in the book, additional questions for study purposes, and PowerPoint slides that follow the order of the text.
Diffusion in Gases and Porous Media
Author: Roberto Cunningham
Publisher: Springer Science & Business Media
ISBN: 147574983X
Category : Science
Languages : en
Pages : 293
Book Description
The world we live in exhibits, on different scales, many phenomena related to the diffusion of gases. Among them are the movement of gases in earth strata, the aeration of soils, the drying of certain materials, some catalytic reactions, purification by adsorption, isotope separation, column chro matography, cooling of nuclear reactors, and the permeability of various packing materials. The evolution of the understanding of this subject has not always been straightforward and progressive-there has been much confusion and many doubts and misunderstandings, some of which remain to this day. The main reason for the difficulties in the development of this subject is, we now know, the lack of an understanding of the effects of walls on diffusing systems. Textbooks usually treat diffusion on two levels: at the physicochemi cal or molecular level, making use of the kinetic theory of gases (which while a very rigorous and well-founded theory nevertheless is valid only for systems without walls), or at the level of a transport phenomenon, a level geared toward applications. The influence of walls is usually disregarded or is treated very briefly (for example, by taking account of the Knudsen regime or by introducing a transition regime of limited validity) in a way unconnected with previous studies. As a consequence, the extensive, gener alized, and well-founded knowledge of systems without walls has often been applied without sound basis to real situations, i.e., to systems with walls.
Publisher: Springer Science & Business Media
ISBN: 147574983X
Category : Science
Languages : en
Pages : 293
Book Description
The world we live in exhibits, on different scales, many phenomena related to the diffusion of gases. Among them are the movement of gases in earth strata, the aeration of soils, the drying of certain materials, some catalytic reactions, purification by adsorption, isotope separation, column chro matography, cooling of nuclear reactors, and the permeability of various packing materials. The evolution of the understanding of this subject has not always been straightforward and progressive-there has been much confusion and many doubts and misunderstandings, some of which remain to this day. The main reason for the difficulties in the development of this subject is, we now know, the lack of an understanding of the effects of walls on diffusing systems. Textbooks usually treat diffusion on two levels: at the physicochemi cal or molecular level, making use of the kinetic theory of gases (which while a very rigorous and well-founded theory nevertheless is valid only for systems without walls), or at the level of a transport phenomenon, a level geared toward applications. The influence of walls is usually disregarded or is treated very briefly (for example, by taking account of the Knudsen regime or by introducing a transition regime of limited validity) in a way unconnected with previous studies. As a consequence, the extensive, gener alized, and well-founded knowledge of systems without walls has often been applied without sound basis to real situations, i.e., to systems with walls.
Modeling Transport Phenomena in Porous Media with Applications
Author: Malay K. Das
Publisher: Springer
ISBN: 3319698664
Category : Technology & Engineering
Languages : en
Pages : 250
Book Description
This book is an ensemble of six major chapters, an introduction, and a closure on modeling transport phenomena in porous media with applications. Two of the six chapters explain the underlying theories, whereas the rest focus on new applications. Porous media transport is essentially a multi-scale process. Accordingly, the related theory described in the second and third chapters covers both continuum‐ and meso‐scale phenomena. Examining the continuum formulation imparts rigor to the empirical porous media models, while the mesoscopic model focuses on the physical processes within the pores. Porous media models are discussed in the context of a few important engineering applications. These include biomedical problems, gas hydrate reservoirs, regenerators, and fuel cells. The discussion reveals the strengths and weaknesses of existing models as well as future research directions.
Publisher: Springer
ISBN: 3319698664
Category : Technology & Engineering
Languages : en
Pages : 250
Book Description
This book is an ensemble of six major chapters, an introduction, and a closure on modeling transport phenomena in porous media with applications. Two of the six chapters explain the underlying theories, whereas the rest focus on new applications. Porous media transport is essentially a multi-scale process. Accordingly, the related theory described in the second and third chapters covers both continuum‐ and meso‐scale phenomena. Examining the continuum formulation imparts rigor to the empirical porous media models, while the mesoscopic model focuses on the physical processes within the pores. Porous media models are discussed in the context of a few important engineering applications. These include biomedical problems, gas hydrate reservoirs, regenerators, and fuel cells. The discussion reveals the strengths and weaknesses of existing models as well as future research directions.
Transport Phenomena in Porous Media III
Author: Derek B Ingham
Publisher: Elsevier
ISBN: 0080543189
Category : Science
Languages : en
Pages : 503
Book Description
Fluid and flow problems in porous media have attracted the attention of industrialists, engineers and scientists from varying disciplines, such as chemical, environmental, and mechanical engineering, geothermal physics and food science. There has been a increasing interest in heat and fluid flows through porous media, making this book a timely and appropriate resource.Each chapter is systematically detailed to be easily grasped by a research worker with basic knowledge of fluid mechanics, heat transfer and computational and experimental methods. At the same time, the readers will be informed of the most recent research literature in the field, giving it dual usage as both a post-grad text book and professional reference.Written by the recent directors of the NATO Advanced Study Institute session on 'Emerging Technologies and Techniques in Porous Media' (June 2003), this book is a timely and essential reference for scientists and engineers within a variety of fields.
Publisher: Elsevier
ISBN: 0080543189
Category : Science
Languages : en
Pages : 503
Book Description
Fluid and flow problems in porous media have attracted the attention of industrialists, engineers and scientists from varying disciplines, such as chemical, environmental, and mechanical engineering, geothermal physics and food science. There has been a increasing interest in heat and fluid flows through porous media, making this book a timely and appropriate resource.Each chapter is systematically detailed to be easily grasped by a research worker with basic knowledge of fluid mechanics, heat transfer and computational and experimental methods. At the same time, the readers will be informed of the most recent research literature in the field, giving it dual usage as both a post-grad text book and professional reference.Written by the recent directors of the NATO Advanced Study Institute session on 'Emerging Technologies and Techniques in Porous Media' (June 2003), this book is a timely and essential reference for scientists and engineers within a variety of fields.
Modelling of Flow and Transport in Fractal Porous Media
Author: Jianchao Cai
Publisher: Elsevier
ISBN: 0128177985
Category : Science
Languages : en
Pages : 274
Book Description
This important resource explores recent theoretical advances and modelling on fluids transport in fractal porous systems and presents a systematic understanding of the characterization of complex microstructure and transport mechanism in fractal porous media. Modelling of Flow and Transport in Fractal Porous Media shows how fractal theory and technology, combined with other modern experiments and numerical simulation methods, will assist researchers and practitioners in modelling of transport properties of fractal porous media, such as fluid flow, heat and mass transfer, mechanical characteristics, and electrical conductivity. - Presents the main methods and technologies for transport characterization of fractal porous media, including soils, reservoirs and artificial materials - Provides the most recent theoretical advances in modelling of fractal porous media, including gas and vapor transport in fibrous materials, nonlinear seepage flow in hydrocarbon reservoirs, mass transfer of porous nanofibers, and fractal mechanics of unsaturated soils - Includes multidisciplinary examples of applications of fractal theory to aid researchers and practitioners in characterizing various porous media structures
Publisher: Elsevier
ISBN: 0128177985
Category : Science
Languages : en
Pages : 274
Book Description
This important resource explores recent theoretical advances and modelling on fluids transport in fractal porous systems and presents a systematic understanding of the characterization of complex microstructure and transport mechanism in fractal porous media. Modelling of Flow and Transport in Fractal Porous Media shows how fractal theory and technology, combined with other modern experiments and numerical simulation methods, will assist researchers and practitioners in modelling of transport properties of fractal porous media, such as fluid flow, heat and mass transfer, mechanical characteristics, and electrical conductivity. - Presents the main methods and technologies for transport characterization of fractal porous media, including soils, reservoirs and artificial materials - Provides the most recent theoretical advances in modelling of fractal porous media, including gas and vapor transport in fibrous materials, nonlinear seepage flow in hydrocarbon reservoirs, mass transfer of porous nanofibers, and fractal mechanics of unsaturated soils - Includes multidisciplinary examples of applications of fractal theory to aid researchers and practitioners in characterizing various porous media structures
Gas Transport in Porous Media
Author: Clifford K. Ho
Publisher: Springer Science & Business Media
ISBN: 140203962X
Category : Science
Languages : en
Pages : 442
Book Description
CLIFFORD K. HOAND STEPHEN W. WEBB Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185, USA Gas and vapor transport in porous media occur in a number of important applications includingdryingofindustrialandfoodproducts,oilandgasexploration,environm- tal remediation of contaminated sites, and carbon sequestration. Understanding the fundamental mechanisms and processes of gas and vapor transport in porous media allows models to be used to evaluate and optimize the performance and design of these systems. In this book, gas and vapor are distinguished by their available states at stan- ? dard temperature and pressure (20 C, 101 kPa). If the gas-phase constituent can also exist as a liquid phase at standard temperature and pressure (e. g. , water, ethanol, toluene, trichlorothylene), it is considered a vapor. If the gas-phase constituent is non-condensable at standard temperature and pressure (e. g. , oxygen, carbon di- ide, helium, hydrogen, propane), it is considered a gas. The distinction is important because different processes affect the transport and behavior of gases and vapors in porous media. For example, mechanisms specific to vapors include vapor-pressure lowering and enhanced vapor diffusion, which are caused by the presence of a g- phase constituent interacting with its liquid phase in an unsaturated porous media. In addition, the “heat-pipe” exploits isothermal latent heat exchange during evaporation and condensation to effectively transfer heat in designed and natural systems.
Publisher: Springer Science & Business Media
ISBN: 140203962X
Category : Science
Languages : en
Pages : 442
Book Description
CLIFFORD K. HOAND STEPHEN W. WEBB Sandia National Laboratories, P. O. Box 5800, Albuquerque, NM 87185, USA Gas and vapor transport in porous media occur in a number of important applications includingdryingofindustrialandfoodproducts,oilandgasexploration,environm- tal remediation of contaminated sites, and carbon sequestration. Understanding the fundamental mechanisms and processes of gas and vapor transport in porous media allows models to be used to evaluate and optimize the performance and design of these systems. In this book, gas and vapor are distinguished by their available states at stan- ? dard temperature and pressure (20 C, 101 kPa). If the gas-phase constituent can also exist as a liquid phase at standard temperature and pressure (e. g. , water, ethanol, toluene, trichlorothylene), it is considered a vapor. If the gas-phase constituent is non-condensable at standard temperature and pressure (e. g. , oxygen, carbon di- ide, helium, hydrogen, propane), it is considered a gas. The distinction is important because different processes affect the transport and behavior of gases and vapors in porous media. For example, mechanisms specific to vapors include vapor-pressure lowering and enhanced vapor diffusion, which are caused by the presence of a g- phase constituent interacting with its liquid phase in an unsaturated porous media. In addition, the “heat-pipe” exploits isothermal latent heat exchange during evaporation and condensation to effectively transfer heat in designed and natural systems.
Transport Phenomena in Porous Media II
Author: I. Pop
Publisher: Elsevier
ISBN: 0080543170
Category : Technology & Engineering
Languages : en
Pages : 469
Book Description
Transport phenomena in porous media continues to be a field which attracts intensive research activity. This is primarily due to the fact that it plays an important and practical role in a large variety of diverse scientific applications. Transport Phenomena in Porous Media II covers a wide range of the engineering and technological applications, including both stable and unstable flows, heat and mass transfer, porosity, and turbulence.Transport Phenomena in Porous Media II is the second volume in a series emphasising the fundamentals and applications of research in porous media. It contains 16 interrelated chapters of controversial, and in some cases conflicting, research, over a wide range of topics. The first volume of this series, published in 1998, met with a very favourable reception. Transport Phenomena in Porous Media II maintains the original concept including a wide and diverse range of topics, whilst providing an up-to-date summary of recent research in the field by its leading practitioners.
Publisher: Elsevier
ISBN: 0080543170
Category : Technology & Engineering
Languages : en
Pages : 469
Book Description
Transport phenomena in porous media continues to be a field which attracts intensive research activity. This is primarily due to the fact that it plays an important and practical role in a large variety of diverse scientific applications. Transport Phenomena in Porous Media II covers a wide range of the engineering and technological applications, including both stable and unstable flows, heat and mass transfer, porosity, and turbulence.Transport Phenomena in Porous Media II is the second volume in a series emphasising the fundamentals and applications of research in porous media. It contains 16 interrelated chapters of controversial, and in some cases conflicting, research, over a wide range of topics. The first volume of this series, published in 1998, met with a very favourable reception. Transport Phenomena in Porous Media II maintains the original concept including a wide and diverse range of topics, whilst providing an up-to-date summary of recent research in the field by its leading practitioners.
Fundamentals of Transport Phenomena in Porous Media
Author: Jacob Bear
Publisher: Springer
ISBN:
Category : Science
Languages : en
Pages : 1018
Book Description
Proceedings of the NATO Advanced Study Institute, Newark, Delaware, July 18-27, 1982
Publisher: Springer
ISBN:
Category : Science
Languages : en
Pages : 1018
Book Description
Proceedings of the NATO Advanced Study Institute, Newark, Delaware, July 18-27, 1982