GaN Electronics for High-temperature Applications

GaN Electronics for High-temperature Applications PDF Author: Mengyang Yuan
Publisher:
ISBN:
Category :
Languages : en
Pages : 100

Get Book Here

Book Description
Gallium nitride is a promising candidate for high-temperature applications. However, despite the excellent performance shown by early high-temperature prototypes, several issues in traditional lateral AlGaN/GaN HEMTs could cause early degradation and failure under high-temperature operation (over 300°C). These include ohmic degradation, gate leakage, buffer leakage, and poor passivation. Besides, enhancement-mode HEMTs are preferred from the application point of view by reducing the circuit complexity and cost. At the same time, the two-dimensional electron gas induced by AlGaN/GaN heterostructures makes HEMTs be naturally depletion-mode devices. This thesis aims to demonstrate devices capable of high-temperature operation without extra cooling systems by combing gate injections transistors (GITs) with ion-implanted refractory metal contacts. The Si ion implantation in AlGaN/GaN heterostructures was comprehensively studied here regarding implantation conditions, activation annealing conditions, metallization schemes. A self-aligned gate-first process, together with etch-stop process, was developed and optimized to improve fabrication efficiency and device uniformity for large-scale integration. Basic logic building blocks, including inverters, NAND gate, NOR gate, SRAM, and ring oscillator, have been demonstrated and characterized at both room temperature and high temperature.

GaN Electronics for High-temperature Applications

GaN Electronics for High-temperature Applications PDF Author: Mengyang Yuan
Publisher:
ISBN:
Category :
Languages : en
Pages : 100

Get Book Here

Book Description
Gallium nitride is a promising candidate for high-temperature applications. However, despite the excellent performance shown by early high-temperature prototypes, several issues in traditional lateral AlGaN/GaN HEMTs could cause early degradation and failure under high-temperature operation (over 300°C). These include ohmic degradation, gate leakage, buffer leakage, and poor passivation. Besides, enhancement-mode HEMTs are preferred from the application point of view by reducing the circuit complexity and cost. At the same time, the two-dimensional electron gas induced by AlGaN/GaN heterostructures makes HEMTs be naturally depletion-mode devices. This thesis aims to demonstrate devices capable of high-temperature operation without extra cooling systems by combing gate injections transistors (GITs) with ion-implanted refractory metal contacts. The Si ion implantation in AlGaN/GaN heterostructures was comprehensively studied here regarding implantation conditions, activation annealing conditions, metallization schemes. A self-aligned gate-first process, together with etch-stop process, was developed and optimized to improve fabrication efficiency and device uniformity for large-scale integration. Basic logic building blocks, including inverters, NAND gate, NOR gate, SRAM, and ring oscillator, have been demonstrated and characterized at both room temperature and high temperature.

Materials for High-Temperature Semiconductor Devices

Materials for High-Temperature Semiconductor Devices PDF Author: Committee on Materials for High-Temperature Semiconductor Devices
Publisher: National Academies Press
ISBN: 030959653X
Category : Technology & Engineering
Languages : en
Pages : 136

Get Book Here

Book Description
Major benefits to system architecture would result if cooling systems for components could be eliminated without compromising performance. This book surveys the state-of-the-art for the three major wide bandgap materials (silicon carbide, nitrides, and diamond), assesses the national and international efforts to develop these materials, identifies the technical barriers to their development and manufacture, determines the criteria for successfully packaging and integrating these devices into existing systems, and recommends future research priorities.

מלחמת הערבים והשלטון העותימאני

מלחמת הערבים והשלטון העותימאני PDF Author: Shlomo Aryeh Ben Elkana
Publisher:
ISBN:
Category : Jewish-Arab relations
Languages : en
Pages : 309

Get Book Here

Book Description


HEMT Technology and Applications

HEMT Technology and Applications PDF Author: Trupti Ranjan Lenka
Publisher: Springer Nature
ISBN: 9811921652
Category : Technology & Engineering
Languages : en
Pages : 246

Get Book Here

Book Description
This book covers two broad domains: state-of-the-art research in GaN HEMT and Ga2O3 HEMT. Each technology covers materials system, band engineering, modeling and simulations, fabrication techniques, and emerging applications. The book presents basic operation principles of HEMT, types of HEMT structures, and semiconductor device physics to understand the device behavior. The book presents numerical modeling of the device and TCAD simulations for high-frequency and high-power applications. The chapters include device characteristics of HEMT including 2DEG density, Id-Vgs, Id-Vds, transconductance, linearity, and C-V. The book emphasizes the state-of-the-art fabrication techniques of HEMT and circuit design for various applications in low noise amplifier, oscillator, power electronics, and biosensor applications. The book focuses on HEMT applications to meet the ever-increasing demands of the industry, innovation in terms of materials, design, modeling, simulation, processes, and circuits. The book will be primarily helpful to undergraduate/postgraduate, researchers, and practitioners in their research.

GaN-based Materials and Devices

GaN-based Materials and Devices PDF Author: Michael Shur
Publisher: World Scientific
ISBN: 9789812562364
Category : Technology & Engineering
Languages : en
Pages : 310

Get Book Here

Book Description
The unique materials properties of GaN-based semiconductors havestimulated a great deal of interest in research and developmentregarding nitride materials growth and optoelectronic andnitride-based electronic devices. High electron mobility andsaturation velocity, high sheet carrier concentration atheterojunction interfaces, high breakdown field, and low thermalimpedance of GaN-based films grown over SiC or bulk AlN substratesmake nitride-based electronic devices very promising.

High-Temperature Electronic Materials, Devices and Sensors Conference

High-Temperature Electronic Materials, Devices and Sensors Conference PDF Author:
Publisher:
ISBN:
Category : Electronics
Languages : en
Pages : 242

Get Book Here

Book Description


High Temperature Electronics

High Temperature Electronics PDF Author: Magnus Willander
Publisher: Springer
ISBN:
Category : Education
Languages : en
Pages : 346

Get Book Here

Book Description
High Temperature Electronics covers a very active and topical area. This text reviews in detail the trends and options for electronic materials in high temperature environments. The contributors are leading authorities from several countries to provide an international appeal. After an introduction to the subject, users of these materials (e.g. aircraft and space, automotive, military and power industries) are considered. A discussion of silicon and gallium arsenide electronics is followed by an assessment of the future for electronic materials and devices.

Thermal Management of Gallium Nitride Electronics

Thermal Management of Gallium Nitride Electronics PDF Author: Marko Tadjer
Publisher: Woodhead Publishing
ISBN: 0128211059
Category : Technology & Engineering
Languages : en
Pages : 498

Get Book Here

Book Description
Thermal Management of Gallium Nitride Electronics outlines the technical approaches undertaken by leaders in the community, the challenges they have faced, and the resulting advances in the field. This book serves as a one-stop reference for compound semiconductor device researchers tasked with solving this engineering challenge for future material systems based on ultra-wide bandgap semiconductors. A number of perspectives are included, such as the growth methods of nanocrystalline diamond, the materials integration of polycrystalline diamond through wafer bonding, and the new physics of thermal transport across heterogeneous interfaces. Over the past 10 years, the book's authors have performed pioneering experiments in the integration of nanocrystalline diamond capping layers into the fabrication process of compound semiconductor devices. Significant research efforts of integrating diamond and GaN have been reported by a number of groups since then, thus resulting in active thermal management options that do not necessarily lead to performance derating to avoid self-heating during radio frequency or power switching operation of these devices. Self-heating refers to the increased channel temperature caused by increased energy transfer from electrons to the lattice at high power. This book chronicles those breakthroughs. - Includes the fundamentals of thermal management of wide-bandgap semiconductors, with historical context, a review of common heating issues, thermal transport physics, and characterization methods - Reviews the latest strategies to overcome heating issues through materials modeling, growth and device design strategies - Touches on emerging, real-world applications for thermal management strategies in power electronics

Power GaN Devices

Power GaN Devices PDF Author: Matteo Meneghini
Publisher: Springer
ISBN: 3319431994
Category : Technology & Engineering
Languages : en
Pages : 383

Get Book Here

Book Description
This book presents the first comprehensive overview of the properties and fabrication methods of GaN-based power transistors, with contributions from the most active research groups in the field. It describes how gallium nitride has emerged as an excellent material for the fabrication of power transistors; thanks to the high energy gap, high breakdown field, and saturation velocity of GaN, these devices can reach breakdown voltages beyond the kV range, and very high switching frequencies, thus being suitable for application in power conversion systems. Based on GaN, switching-mode power converters with efficiency in excess of 99 % have been already demonstrated, thus clearing the way for massive adoption of GaN transistors in the power conversion market. This is expected to have important advantages at both the environmental and economic level, since power conversion losses account for 10 % of global electricity consumption. The first part of the book describes the properties and advantages of gallium nitride compared to conventional semiconductor materials. The second part of the book describes the techniques used for device fabrication, and the methods for GaN-on-Silicon mass production. Specific attention is paid to the three most advanced device structures: lateral transistors, vertical power devices, and nanowire-based HEMTs. Other relevant topics covered by the book are the strategies for normally-off operation, and the problems related to device reliability. The last chapter reviews the switching characteristics of GaN HEMTs based on a systems level approach. This book is a unique reference for people working in the materials, device and power electronics fields; it provides interdisciplinary information on material growth, device fabrication, reliability issues and circuit-level switching investigation.

GaN Transistors for Efficient Power Conversion

GaN Transistors for Efficient Power Conversion PDF Author: Alex Lidow
Publisher: John Wiley & Sons
ISBN: 1119594146
Category : Science
Languages : en
Pages : 389

Get Book Here

Book Description
An up-to-date, practical guide on upgrading from silicon to GaN, and how to use GaN transistors in power conversion systems design This updated, third edition of a popular book on GaN transistors for efficient power conversion has been substantially expanded to keep students and practicing power conversion engineers ahead of the learning curve in GaN technology advancements. Acknowledging that GaN transistors are not one-to-one replacements for the current MOSFET technology, this book serves as a practical guide for understanding basic GaN transistor construction, characteristics, and applications. Included are discussions on the fundamental physics of these power semiconductors, layout, and other circuit design considerations, as well as specific application examples demonstrating design techniques when employing GaN devices. GaN Transistors for Efficient Power Conversion, 3rd Edition brings key updates to the chapters of Driving GaN Transistors; Modeling, Simulation, and Measurement of GaN Transistors; DC-DC Power Conversion; Envelope Tracking; and Highly Resonant Wireless Energy Transfer. It also offers new chapters on Thermal Management, Multilevel Converters, and Lidar, and revises many others throughout. Written by leaders in the power semiconductor field and industry pioneers in GaN power transistor technology and applications Updated with 35% new material, including three new chapters on Thermal Management, Multilevel Converters, Wireless Power, and Lidar Features practical guidance on formulating specific circuit designs when constructing power conversion systems using GaN transistors A valuable resource for professional engineers, systems designers, and electrical engineering students who need to fully understand the state-of-the-art GaN Transistors for Efficient Power Conversion, 3rd Edition is an essential learning tool and reference guide that enables power conversion engineers to design energy-efficient, smaller, and more cost-effective products using GaN transistors.