Author: Etienne E. Kerre
Publisher: Physica
ISBN: 379081847X
Category : Computers
Languages : en
Pages : 425
Book Description
Since time immemorial, vision in general and images in particular have played an important and essential role in human life. Nowadays, the field of image processing also has numerous scientific, commercial, industrial and military applications. All these applications result from the interaction between fun damental scientific research on the one hand, and the development of new and high-standard technology on the other hand. Regarding the scientific com ponent, quite recently the scientific community became familiar with "fuzzy techniques" in image processing, which make use of the framework of fuzzy sets and related theories. The theory of fuzzy sets was initiated in 1965 by Zadeh, and is one of the most developed models to treat imprecision and uncertainty. Instead of the classical approach that an object belongs or does not belong to a set, the concept of a fuzzy set allows a gradual transition from membership to nonmembership, providing partial degrees of member ship. Fuzzy techniques are often complementary to existing techniques and can contribute to the development of better and more robust methods, as has already been illustrated in numerous scientific branches. With this vol ume, we want to demonstrate that the introduction and application of fuzzy techniques can also be very successful in the area of image processing. This book contains high-quality contributions of over 30 field experts, covering a wide range of both theoretical and practical applications of fuzzy techniques in image processing.
Fuzzy Techniques in Image Processing
Author: Etienne E. Kerre
Publisher: Physica
ISBN: 379081847X
Category : Computers
Languages : en
Pages : 425
Book Description
Since time immemorial, vision in general and images in particular have played an important and essential role in human life. Nowadays, the field of image processing also has numerous scientific, commercial, industrial and military applications. All these applications result from the interaction between fun damental scientific research on the one hand, and the development of new and high-standard technology on the other hand. Regarding the scientific com ponent, quite recently the scientific community became familiar with "fuzzy techniques" in image processing, which make use of the framework of fuzzy sets and related theories. The theory of fuzzy sets was initiated in 1965 by Zadeh, and is one of the most developed models to treat imprecision and uncertainty. Instead of the classical approach that an object belongs or does not belong to a set, the concept of a fuzzy set allows a gradual transition from membership to nonmembership, providing partial degrees of member ship. Fuzzy techniques are often complementary to existing techniques and can contribute to the development of better and more robust methods, as has already been illustrated in numerous scientific branches. With this vol ume, we want to demonstrate that the introduction and application of fuzzy techniques can also be very successful in the area of image processing. This book contains high-quality contributions of over 30 field experts, covering a wide range of both theoretical and practical applications of fuzzy techniques in image processing.
Publisher: Physica
ISBN: 379081847X
Category : Computers
Languages : en
Pages : 425
Book Description
Since time immemorial, vision in general and images in particular have played an important and essential role in human life. Nowadays, the field of image processing also has numerous scientific, commercial, industrial and military applications. All these applications result from the interaction between fun damental scientific research on the one hand, and the development of new and high-standard technology on the other hand. Regarding the scientific com ponent, quite recently the scientific community became familiar with "fuzzy techniques" in image processing, which make use of the framework of fuzzy sets and related theories. The theory of fuzzy sets was initiated in 1965 by Zadeh, and is one of the most developed models to treat imprecision and uncertainty. Instead of the classical approach that an object belongs or does not belong to a set, the concept of a fuzzy set allows a gradual transition from membership to nonmembership, providing partial degrees of member ship. Fuzzy techniques are often complementary to existing techniques and can contribute to the development of better and more robust methods, as has already been illustrated in numerous scientific branches. With this vol ume, we want to demonstrate that the introduction and application of fuzzy techniques can also be very successful in the area of image processing. This book contains high-quality contributions of over 30 field experts, covering a wide range of both theoretical and practical applications of fuzzy techniques in image processing.
Fuzzy Image Processing and Applications with MATLAB
Author: Tamalika Chaira
Publisher: CRC Press
ISBN: 1439807094
Category : Technology & Engineering
Languages : en
Pages : 240
Book Description
In contrast to classical image analysis methods that employ "crisp" mathematics, fuzzy set techniques provide an elegant foundation and a set of rich methodologies for diverse image-processing tasks. However, a solid understanding of fuzzy processing requires a firm grasp of essential principles and background knowledge. Fuzzy Image Processing and Applications with MATLAB® presents the integral science and essential mathematics behind this exciting and dynamic branch of image processing, which is becoming increasingly important to applications in areas such as remote sensing, medical imaging, and video surveillance, to name a few. Many texts cover the use of crisp sets, but this book stands apart by exploring the explosion of interest and significant growth in fuzzy set image processing. The distinguished authors clearly lay out theoretical concepts and applications of fuzzy set theory and their impact on areas such as enhancement, segmentation, filtering, edge detection, content-based image retrieval, pattern recognition, and clustering. They describe all components of fuzzy, detailing preprocessing, threshold detection, and match-based segmentation. Minimize Processing Errors Using Dynamic Fuzzy Set Theory This book serves as a primer on MATLAB and demonstrates how to implement it in fuzzy image processing methods. It illustrates how the code can be used to improve calculations that help prevent or deal with imprecision—whether it is in the grey level of the image, geometry of an object, definition of an object’s edges or boundaries, or in knowledge representation, object recognition, or image interpretation. The text addresses these considerations by applying fuzzy set theory to image thresholding, segmentation, edge detection, enhancement, clustering, color retrieval, clustering in pattern recognition, and other image processing operations. Highlighting key ideas, the authors present the experimental results of their own new fuzzy approaches and those suggested by different authors, offering data and insights that will be useful to teachers, scientists, and engineers, among others.
Publisher: CRC Press
ISBN: 1439807094
Category : Technology & Engineering
Languages : en
Pages : 240
Book Description
In contrast to classical image analysis methods that employ "crisp" mathematics, fuzzy set techniques provide an elegant foundation and a set of rich methodologies for diverse image-processing tasks. However, a solid understanding of fuzzy processing requires a firm grasp of essential principles and background knowledge. Fuzzy Image Processing and Applications with MATLAB® presents the integral science and essential mathematics behind this exciting and dynamic branch of image processing, which is becoming increasingly important to applications in areas such as remote sensing, medical imaging, and video surveillance, to name a few. Many texts cover the use of crisp sets, but this book stands apart by exploring the explosion of interest and significant growth in fuzzy set image processing. The distinguished authors clearly lay out theoretical concepts and applications of fuzzy set theory and their impact on areas such as enhancement, segmentation, filtering, edge detection, content-based image retrieval, pattern recognition, and clustering. They describe all components of fuzzy, detailing preprocessing, threshold detection, and match-based segmentation. Minimize Processing Errors Using Dynamic Fuzzy Set Theory This book serves as a primer on MATLAB and demonstrates how to implement it in fuzzy image processing methods. It illustrates how the code can be used to improve calculations that help prevent or deal with imprecision—whether it is in the grey level of the image, geometry of an object, definition of an object’s edges or boundaries, or in knowledge representation, object recognition, or image interpretation. The text addresses these considerations by applying fuzzy set theory to image thresholding, segmentation, edge detection, enhancement, clustering, color retrieval, clustering in pattern recognition, and other image processing operations. Highlighting key ideas, the authors present the experimental results of their own new fuzzy approaches and those suggested by different authors, offering data and insights that will be useful to teachers, scientists, and engineers, among others.
Fuzzy Logic for Image Processing
Author: Laura Caponetti
Publisher: Springer
ISBN: 3319441302
Category : Technology & Engineering
Languages : en
Pages : 141
Book Description
This book provides an introduction to fuzzy logic approaches useful in image processing. The authors start by introducing image processing tasks of low and medium level such as thresholding, enhancement, edge detection, morphological filters, and segmentation and shows how fuzzy logic approaches apply. The book is divided into two parts. The first includes vagueness and ambiguity in digital images, fuzzy image processing, fuzzy rule based systems, and fuzzy clustering. The second part includes applications to image processing, image thresholding, color contrast enhancement, edge detection, morphological analysis, and image segmentation. Throughout, they describe image processing algorithms based on fuzzy logic under methodological aspects in addition to applicative aspects. Implementations in java are provided for the various applications.
Publisher: Springer
ISBN: 3319441302
Category : Technology & Engineering
Languages : en
Pages : 141
Book Description
This book provides an introduction to fuzzy logic approaches useful in image processing. The authors start by introducing image processing tasks of low and medium level such as thresholding, enhancement, edge detection, morphological filters, and segmentation and shows how fuzzy logic approaches apply. The book is divided into two parts. The first includes vagueness and ambiguity in digital images, fuzzy image processing, fuzzy rule based systems, and fuzzy clustering. The second part includes applications to image processing, image thresholding, color contrast enhancement, edge detection, morphological analysis, and image segmentation. Throughout, they describe image processing algorithms based on fuzzy logic under methodological aspects in addition to applicative aspects. Implementations in java are provided for the various applications.
Fuzzy Filters for Image Processing
Author: Mike Nachtegael
Publisher: Springer
ISBN: 354036420X
Category : Technology & Engineering
Languages : en
Pages : 393
Book Description
The ongoing increase in scale of integration of electronics makes storage and computational power affordable to many applications. Also image process ing systems can benefit from this trend. A variety of algorithms for image processing tasks becomes close at hand. From the whole range of possible approaches, those based on fuzzy logic are the ones this book focusses on. A particular useful property of fuzzy logic techniques is their ability to represent knowledge in a way which is comprehensible to human interpretation. The theory of fuzzy sets and fuzzy logic was initiated in 1965 by Zadeh, and is one of the most developed models to treat imprecision and uncertainty. Instead of the classical approach that an object belongs or does not belong to a set, the concept of a fuzzy set allows a gradual transition from mem bership to nonmembership, providing partial degrees of membership. Fuzzy techniques are often complementary to existing techniques and can contribute to the development of better and more robust methods, as has already been illustrated in numerous scientific branches. The present book resulted from the workshop "Fuzzy Filters for Image Processing" which was organized at the 10th FUZZ-IEEE Conference in Mel bourne, Australia. At this event several speakers have given an overview of the current state-of-the-art of fuzzy filters for image processing. Afterwards, the book has been completed with contributions of other international re searchers.
Publisher: Springer
ISBN: 354036420X
Category : Technology & Engineering
Languages : en
Pages : 393
Book Description
The ongoing increase in scale of integration of electronics makes storage and computational power affordable to many applications. Also image process ing systems can benefit from this trend. A variety of algorithms for image processing tasks becomes close at hand. From the whole range of possible approaches, those based on fuzzy logic are the ones this book focusses on. A particular useful property of fuzzy logic techniques is their ability to represent knowledge in a way which is comprehensible to human interpretation. The theory of fuzzy sets and fuzzy logic was initiated in 1965 by Zadeh, and is one of the most developed models to treat imprecision and uncertainty. Instead of the classical approach that an object belongs or does not belong to a set, the concept of a fuzzy set allows a gradual transition from mem bership to nonmembership, providing partial degrees of membership. Fuzzy techniques are often complementary to existing techniques and can contribute to the development of better and more robust methods, as has already been illustrated in numerous scientific branches. The present book resulted from the workshop "Fuzzy Filters for Image Processing" which was organized at the 10th FUZZ-IEEE Conference in Mel bourne, Australia. At this event several speakers have given an overview of the current state-of-the-art of fuzzy filters for image processing. Afterwards, the book has been completed with contributions of other international re searchers.
Fuzzy Models and Algorithms for Pattern Recognition and Image Processing
Author: James C. Bezdek
Publisher: Springer Science & Business Media
ISBN: 0387245790
Category : Computers
Languages : en
Pages : 786
Book Description
Fuzzy Models and Algorithms for Pattern Recognition and Image Processing presents a comprehensive introduction of the use of fuzzy models in pattern recognition and selected topics in image processing and computer vision. Unique to this volume in the Kluwer Handbooks of Fuzzy Sets Series is the fact that this book was written in its entirety by its four authors. A single notation, presentation style, and purpose are used throughout. The result is an extensive unified treatment of many fuzzy models for pattern recognition. The main topics are clustering and classifier design, with extensive material on feature analysis relational clustering, image processing and computer vision. Also included are numerous figures, images and numerical examples that illustrate the use of various models involving applications in medicine, character and word recognition, remote sensing, military image analysis, and industrial engineering.
Publisher: Springer Science & Business Media
ISBN: 0387245790
Category : Computers
Languages : en
Pages : 786
Book Description
Fuzzy Models and Algorithms for Pattern Recognition and Image Processing presents a comprehensive introduction of the use of fuzzy models in pattern recognition and selected topics in image processing and computer vision. Unique to this volume in the Kluwer Handbooks of Fuzzy Sets Series is the fact that this book was written in its entirety by its four authors. A single notation, presentation style, and purpose are used throughout. The result is an extensive unified treatment of many fuzzy models for pattern recognition. The main topics are clustering and classifier design, with extensive material on feature analysis relational clustering, image processing and computer vision. Also included are numerous figures, images and numerical examples that illustrate the use of various models involving applications in medicine, character and word recognition, remote sensing, military image analysis, and industrial engineering.
Soft Computing in Image Processing
Author: Mike Nachtegael
Publisher: Springer
ISBN: 354038233X
Category : Technology & Engineering
Languages : en
Pages : 505
Book Description
Images have always been very important in human life. Their applications range from primitive communication between humans of all ages to advanced technologies in the industrial, medical and military field. The increased possibilities to capture and analyze images have contributed to the largeness that the scientific field of "image processing" has become today. Many techniques are being applied, including soft computing. "Soft Computing in Image Processing: Recent Advances" follows the edited volumes "Fuzzy Techniques in Image Processing" (volume 52, published in 2000) and "Fuzzy Filters for Image Processing" (volume 122, published in 2003), and covers a wide range of both practical and theoretical applications of soft computing in image processing. The 16 excellent chapters of the book have been grouped into five parts: Applications in Remote Sensing, Applications in Image Retrieval, Applications in Image Analysis, Other Applications, and Theoretical Contributions. The focus of the book is on practical applications, which makes it interesting for every researcher that is involved with soft computing, image processing, or both scientific branches.
Publisher: Springer
ISBN: 354038233X
Category : Technology & Engineering
Languages : en
Pages : 505
Book Description
Images have always been very important in human life. Their applications range from primitive communication between humans of all ages to advanced technologies in the industrial, medical and military field. The increased possibilities to capture and analyze images have contributed to the largeness that the scientific field of "image processing" has become today. Many techniques are being applied, including soft computing. "Soft Computing in Image Processing: Recent Advances" follows the edited volumes "Fuzzy Techniques in Image Processing" (volume 52, published in 2000) and "Fuzzy Filters for Image Processing" (volume 122, published in 2003), and covers a wide range of both practical and theoretical applications of soft computing in image processing. The 16 excellent chapters of the book have been grouped into five parts: Applications in Remote Sensing, Applications in Image Retrieval, Applications in Image Analysis, Other Applications, and Theoretical Contributions. The focus of the book is on practical applications, which makes it interesting for every researcher that is involved with soft computing, image processing, or both scientific branches.
Soft Computing for Image Processing
Author: Sankar K. Pal
Publisher: Physica
ISBN: 3790818585
Category : Computers
Languages : en
Pages : 600
Book Description
Any task that involves decision-making can benefit from soft computing techniques which allow premature decisions to be deferred. The processing and analysis of images is no exception to this rule. In the classical image analysis paradigm, the first step is nearly always some sort of segmentation process in which the image is divided into (hopefully, meaningful) parts. It was pointed out nearly 30 years ago by Prewitt (1] that the decisions involved in image segmentation could be postponed by regarding the image parts as fuzzy, rather than crisp, subsets of the image. It was also realized very early that many basic properties of and operations on image subsets could be extended to fuzzy subsets; for example, the classic paper on fuzzy sets by Zadeh [2] discussed the "set algebra" of fuzzy sets (using sup for union and inf for intersection), and extended the defmition of convexity to fuzzy sets. These and similar ideas allowed many of the methods of image analysis to be generalized to fuzzy image parts. For are cent review on geometric description of fuzzy sets see, e. g. , [3]. Fuzzy methods are also valuable in image processing and coding, where learning processes can be important in choosing the parameters of filters, quantizers, etc.
Publisher: Physica
ISBN: 3790818585
Category : Computers
Languages : en
Pages : 600
Book Description
Any task that involves decision-making can benefit from soft computing techniques which allow premature decisions to be deferred. The processing and analysis of images is no exception to this rule. In the classical image analysis paradigm, the first step is nearly always some sort of segmentation process in which the image is divided into (hopefully, meaningful) parts. It was pointed out nearly 30 years ago by Prewitt (1] that the decisions involved in image segmentation could be postponed by regarding the image parts as fuzzy, rather than crisp, subsets of the image. It was also realized very early that many basic properties of and operations on image subsets could be extended to fuzzy subsets; for example, the classic paper on fuzzy sets by Zadeh [2] discussed the "set algebra" of fuzzy sets (using sup for union and inf for intersection), and extended the defmition of convexity to fuzzy sets. These and similar ideas allowed many of the methods of image analysis to be generalized to fuzzy image parts. For are cent review on geometric description of fuzzy sets see, e. g. , [3]. Fuzzy methods are also valuable in image processing and coding, where learning processes can be important in choosing the parameters of filters, quantizers, etc.
Medical Image Processing
Author: Tamalika Chaira
Publisher: CRC Press
ISBN: 1498700470
Category : Computers
Languages : en
Pages : 234
Book Description
Medical image analysis using advanced fuzzy set theoretic techniques is an exciting and dynamic branch of image processing. Since the introduction of fuzzy set theory, there has been an explosion of interest in advanced fuzzy set theories-such as intuitionistic fuzzy and Type II fuzzy set-that represent uncertainty in a better way.Medical Image Pro
Publisher: CRC Press
ISBN: 1498700470
Category : Computers
Languages : en
Pages : 234
Book Description
Medical image analysis using advanced fuzzy set theoretic techniques is an exciting and dynamic branch of image processing. Since the introduction of fuzzy set theory, there has been an explosion of interest in advanced fuzzy set theories-such as intuitionistic fuzzy and Type II fuzzy set-that represent uncertainty in a better way.Medical Image Pro
Type-2 Fuzzy Logic: Theory and Applications
Author: Oscar Castillo
Publisher: Springer Science & Business Media
ISBN: 3540762833
Category : Mathematics
Languages : en
Pages : 252
Book Description
This book describes new methods for building intelligent systems using type-2 fuzzy logic and soft computing (SC) techniques. The authors extend the use of fuzzy logic to a higher order, which is called type-2 fuzzy logic. Combining type-2 fuzzy logic with traditional SC techniques, we can build powerful hybrid intelligent systems that can use the advantages that each technique offers. This book is intended to be a major reference tool and can be used as a textbook.
Publisher: Springer Science & Business Media
ISBN: 3540762833
Category : Mathematics
Languages : en
Pages : 252
Book Description
This book describes new methods for building intelligent systems using type-2 fuzzy logic and soft computing (SC) techniques. The authors extend the use of fuzzy logic to a higher order, which is called type-2 fuzzy logic. Combining type-2 fuzzy logic with traditional SC techniques, we can build powerful hybrid intelligent systems that can use the advantages that each technique offers. This book is intended to be a major reference tool and can be used as a textbook.
Fuzzy Systems in Bioinformatics and Computational Biology
Author: Yaochu Jin
Publisher: Springer Science & Business Media
ISBN: 3540899677
Category : Computers
Languages : en
Pages : 336
Book Description
Biological systems are inherently stochastic and uncertain. Thus, research in bioinformatics, biomedical engineering and computational biology has to deal with a large amount of uncertainties. Fuzzy logic has shown to be a powerful tool in capturing different uncertainties in engineering systems. In recent years, fuzzy logic based modeling and analysis approaches are also becoming popular in analyzing biological data and modeling biological systems. Numerous research and application results have been reported that demonstrated the effectiveness of fuzzy logic in solving a wide range of biological problems found in bioinformatics, biomedical engineering, and computational biology. Contributed by leading experts world-wide, this edited book contains 16 chapters presenting representative research results on the application of fuzzy systems to genome sequence assembly, gene expression analysis, promoter analysis, cis-regulation logic analysis and synthesis, reconstruction of genetic and cellular networks, as well as biomedical problems, such as medical image processing, electrocardiogram data classification and anesthesia monitoring and control. This volume is a valuable reference for researchers, practitioners, as well as graduate students working in the field of bioinformatics, biomedical engineering and computational biology.
Publisher: Springer Science & Business Media
ISBN: 3540899677
Category : Computers
Languages : en
Pages : 336
Book Description
Biological systems are inherently stochastic and uncertain. Thus, research in bioinformatics, biomedical engineering and computational biology has to deal with a large amount of uncertainties. Fuzzy logic has shown to be a powerful tool in capturing different uncertainties in engineering systems. In recent years, fuzzy logic based modeling and analysis approaches are also becoming popular in analyzing biological data and modeling biological systems. Numerous research and application results have been reported that demonstrated the effectiveness of fuzzy logic in solving a wide range of biological problems found in bioinformatics, biomedical engineering, and computational biology. Contributed by leading experts world-wide, this edited book contains 16 chapters presenting representative research results on the application of fuzzy systems to genome sequence assembly, gene expression analysis, promoter analysis, cis-regulation logic analysis and synthesis, reconstruction of genetic and cellular networks, as well as biomedical problems, such as medical image processing, electrocardiogram data classification and anesthesia monitoring and control. This volume is a valuable reference for researchers, practitioners, as well as graduate students working in the field of bioinformatics, biomedical engineering and computational biology.