Author: Hung T. Nguyen
Publisher: CRC Press
ISBN: 1420035525
Category : Mathematics
Languages : en
Pages : 314
Book Description
Although the use of fuzzy control methods has grown nearly to the level of classical control, the true understanding of fuzzy control lags seriously behind. Moreover, most engineers are well versed in either traditional control or in fuzzy control-rarely both. Each has applications for which it is better suited, but without a good understanding of
A First Course in Fuzzy and Neural Control
Author: Hung T. Nguyen
Publisher: CRC Press
ISBN: 1420035525
Category : Mathematics
Languages : en
Pages : 314
Book Description
Although the use of fuzzy control methods has grown nearly to the level of classical control, the true understanding of fuzzy control lags seriously behind. Moreover, most engineers are well versed in either traditional control or in fuzzy control-rarely both. Each has applications for which it is better suited, but without a good understanding of
Publisher: CRC Press
ISBN: 1420035525
Category : Mathematics
Languages : en
Pages : 314
Book Description
Although the use of fuzzy control methods has grown nearly to the level of classical control, the true understanding of fuzzy control lags seriously behind. Moreover, most engineers are well versed in either traditional control or in fuzzy control-rarely both. Each has applications for which it is better suited, but without a good understanding of
Fuzzy Neural Networks for Real Time Control Applications
Author: Erdal Kayacan
Publisher: Butterworth-Heinemann
ISBN: 0128027037
Category : Mathematics
Languages : en
Pages : 266
Book Description
AN INDISPENSABLE RESOURCE FOR ALL THOSE WHO DESIGN AND IMPLEMENT TYPE-1 AND TYPE-2 FUZZY NEURAL NETWORKS IN REAL TIME SYSTEMS Delve into the type-2 fuzzy logic systems and become engrossed in the parameter update algorithms for type-1 and type-2 fuzzy neural networks and their stability analysis with this book! Not only does this book stand apart from others in its focus but also in its application-based presentation style. Prepared in a way that can be easily understood by those who are experienced and inexperienced in this field. Readers can benefit from the computer source codes for both identification and control purposes which are given at the end of the book. A clear and an in-depth examination has been made of all the necessary mathematical foundations, type-1 and type-2 fuzzy neural network structures and their learning algorithms as well as their stability analysis. You will find that each chapter is devoted to a different learning algorithm for the tuning of type-1 and type-2 fuzzy neural networks; some of which are: • Gradient descent • Levenberg-Marquardt • Extended Kalman filter In addition to the aforementioned conventional learning methods above, number of novel sliding mode control theory-based learning algorithms, which are simpler and have closed forms, and their stability analysis have been proposed. Furthermore, hybrid methods consisting of particle swarm optimization and sliding mode control theory-based algorithms have also been introduced. The potential readers of this book are expected to be the undergraduate and graduate students, engineers, mathematicians and computer scientists. Not only can this book be used as a reference source for a scientist who is interested in fuzzy neural networks and their real-time implementations but also as a course book of fuzzy neural networks or artificial intelligence in master or doctorate university studies. We hope that this book will serve its main purpose successfully. - Parameter update algorithms for type-1 and type-2 fuzzy neural networks and their stability analysis - Contains algorithms that are applicable to real time systems - Introduces fast and simple adaptation rules for type-1 and type-2 fuzzy neural networks - Number of case studies both in identification and control - Provides MATLAB® codes for some algorithms in the book
Publisher: Butterworth-Heinemann
ISBN: 0128027037
Category : Mathematics
Languages : en
Pages : 266
Book Description
AN INDISPENSABLE RESOURCE FOR ALL THOSE WHO DESIGN AND IMPLEMENT TYPE-1 AND TYPE-2 FUZZY NEURAL NETWORKS IN REAL TIME SYSTEMS Delve into the type-2 fuzzy logic systems and become engrossed in the parameter update algorithms for type-1 and type-2 fuzzy neural networks and their stability analysis with this book! Not only does this book stand apart from others in its focus but also in its application-based presentation style. Prepared in a way that can be easily understood by those who are experienced and inexperienced in this field. Readers can benefit from the computer source codes for both identification and control purposes which are given at the end of the book. A clear and an in-depth examination has been made of all the necessary mathematical foundations, type-1 and type-2 fuzzy neural network structures and their learning algorithms as well as their stability analysis. You will find that each chapter is devoted to a different learning algorithm for the tuning of type-1 and type-2 fuzzy neural networks; some of which are: • Gradient descent • Levenberg-Marquardt • Extended Kalman filter In addition to the aforementioned conventional learning methods above, number of novel sliding mode control theory-based learning algorithms, which are simpler and have closed forms, and their stability analysis have been proposed. Furthermore, hybrid methods consisting of particle swarm optimization and sliding mode control theory-based algorithms have also been introduced. The potential readers of this book are expected to be the undergraduate and graduate students, engineers, mathematicians and computer scientists. Not only can this book be used as a reference source for a scientist who is interested in fuzzy neural networks and their real-time implementations but also as a course book of fuzzy neural networks or artificial intelligence in master or doctorate university studies. We hope that this book will serve its main purpose successfully. - Parameter update algorithms for type-1 and type-2 fuzzy neural networks and their stability analysis - Contains algorithms that are applicable to real time systems - Introduces fast and simple adaptation rules for type-1 and type-2 fuzzy neural networks - Number of case studies both in identification and control - Provides MATLAB® codes for some algorithms in the book
Fuzzy-neural Control
Author: Junhong Nie
Publisher: Prentice Hall PTR
ISBN:
Category : Computers
Languages : en
Pages : 262
Book Description
Illustrating how fuzzy logic and neural networks can be integrated into a model reference control context for real-time control of multivariable systems, this book provides an architecture which accommodates several popular learning/reasoning paradigms.
Publisher: Prentice Hall PTR
ISBN:
Category : Computers
Languages : en
Pages : 262
Book Description
Illustrating how fuzzy logic and neural networks can be integrated into a model reference control context for real-time control of multivariable systems, this book provides an architecture which accommodates several popular learning/reasoning paradigms.
Neural and Fuzzy Logic Control of Drives and Power Systems
Author: Marcian Cirstea
Publisher: Newnes
ISBN: 9780750655583
Category : Education
Languages : en
Pages : 416
Book Description
*Introduces cutting-edge control systems to a wide readership of engineers and students *The first book on neuro-fuzzy control systems to take a practical, applications-based approach, backed up with worked examples and case studies *Learn to use VHDL in real-world applications Introducing cutting edge control systems through real-world applications Neural networks and fuzzy logic based systems offer a modern control solution to AC machines used in variable speed drives, enabling industry to save costs and increase efficiency by replacing expensive and high-maintenance DC motor systems. The use of fast micros has revolutionised the field with sensorless vector control and direct torque control. This book reflects recent research findings and acts as a useful guide to the new generation of control systems for a wide readership of advanced undergraduate and graduate students, as well as practising engineers. The authors guide readers quickly and concisely through the complex topics of neural networks, fuzzy logic, mathematical modelling of electrical machines, power systems control and VHDL design. Unlike the academic monographs that have previously been published on each of these subjects, this book combines them and is based round case studies of systems analysis, control strategies, design, simulation and implementation. The result is a guide to applied control systems design that will appeal equally to students and professional design engineers. The book can also be used as a unique VHDL design aid, based on real-world power engineering applications.
Publisher: Newnes
ISBN: 9780750655583
Category : Education
Languages : en
Pages : 416
Book Description
*Introduces cutting-edge control systems to a wide readership of engineers and students *The first book on neuro-fuzzy control systems to take a practical, applications-based approach, backed up with worked examples and case studies *Learn to use VHDL in real-world applications Introducing cutting edge control systems through real-world applications Neural networks and fuzzy logic based systems offer a modern control solution to AC machines used in variable speed drives, enabling industry to save costs and increase efficiency by replacing expensive and high-maintenance DC motor systems. The use of fast micros has revolutionised the field with sensorless vector control and direct torque control. This book reflects recent research findings and acts as a useful guide to the new generation of control systems for a wide readership of advanced undergraduate and graduate students, as well as practising engineers. The authors guide readers quickly and concisely through the complex topics of neural networks, fuzzy logic, mathematical modelling of electrical machines, power systems control and VHDL design. Unlike the academic monographs that have previously been published on each of these subjects, this book combines them and is based round case studies of systems analysis, control strategies, design, simulation and implementation. The result is a guide to applied control systems design that will appeal equally to students and professional design engineers. The book can also be used as a unique VHDL design aid, based on real-world power engineering applications.
Neural Networks and Fuzzy-logic Control on Personal Computers and Workstations
Author: Granino Arthur Korn
Publisher: MIT Press (MA)
ISBN:
Category : Computers
Languages : en
Pages : 418
Book Description
Neural Networks and Fuzzy-Logic Control introduces a simple integrated environment for programming displays and report generation. It includes the only currently available software that permits combined simulation of multiple neural networks, fuzzy-logic controllers, and dynamic systems such as robots or physiological models. The enclosed educational version of DESIRE/NEUNET differs for the full system mainly in the size of its data area and includes a compiler, two screen editors, color graphics, and many ready-to-run examples. The software lets users or instructors add their own help screens and interactive menus. The version of DESIRE/NEUNET included here is for PCs, viz. 286/287, 386/387, 486DX, Pentium, P6, SX with math coprocessor.
Publisher: MIT Press (MA)
ISBN:
Category : Computers
Languages : en
Pages : 418
Book Description
Neural Networks and Fuzzy-Logic Control introduces a simple integrated environment for programming displays and report generation. It includes the only currently available software that permits combined simulation of multiple neural networks, fuzzy-logic controllers, and dynamic systems such as robots or physiological models. The enclosed educational version of DESIRE/NEUNET differs for the full system mainly in the size of its data area and includes a compiler, two screen editors, color graphics, and many ready-to-run examples. The software lets users or instructors add their own help screens and interactive menus. The version of DESIRE/NEUNET included here is for PCs, viz. 286/287, 386/387, 486DX, Pentium, P6, SX with math coprocessor.
Neural Fuzzy Systems
Author: Ching Tai Lin
Publisher: Prentice Hall
ISBN:
Category : Computers
Languages : en
Pages : 824
Book Description
Neural Fuzzy Systems provides a comprehensive, up-to-date introduction to the basic theories of fuzzy systems and neural networks, as well as an exploration of how these two fields can be integrated to create Neural-Fuzzy Systems. It includes Matlab software, with a Neural Network Toolkit, and a Fuzzy System Toolkit.
Publisher: Prentice Hall
ISBN:
Category : Computers
Languages : en
Pages : 824
Book Description
Neural Fuzzy Systems provides a comprehensive, up-to-date introduction to the basic theories of fuzzy systems and neural networks, as well as an exploration of how these two fields can be integrated to create Neural-Fuzzy Systems. It includes Matlab software, with a Neural Network Toolkit, and a Fuzzy System Toolkit.
Neural Fuzzy Control Systems With Structure And Parameter Learning
Author: Chin-teng Lin
Publisher: World Scientific Publishing Company
ISBN: 9813104708
Category : Technology & Engineering
Languages : en
Pages : 152
Book Description
A general neural-network-based connectionist model, called Fuzzy Neural Network (FNN), is proposed in this book for the realization of a fuzzy logic control and decision system. The FNN is a feedforward multi-layered network which integrates the basic elements and functions of a traditional fuzzy logic controller into a connectionist structure which has distributed learning abilities.In order to set up this proposed FNN, the author recommends two complementary structure/parameter learning algorithms: a two-phase hybrid learning algorithm and an on-line supervised structure/parameter learning algorithm.Both of these learning algorithms require exact supervised training data for learning. In some real-time applications, exact training data may be expensive or even impossible to get. To solve this reinforcement learning problem for real-world applications, a Reinforcement Fuzzy Neural Network (RFNN) is further proposed. Computer simulation examples are presented to illustrate the performance and applicability of the proposed FNN, RFNN and their associated learning algorithms for various applications.
Publisher: World Scientific Publishing Company
ISBN: 9813104708
Category : Technology & Engineering
Languages : en
Pages : 152
Book Description
A general neural-network-based connectionist model, called Fuzzy Neural Network (FNN), is proposed in this book for the realization of a fuzzy logic control and decision system. The FNN is a feedforward multi-layered network which integrates the basic elements and functions of a traditional fuzzy logic controller into a connectionist structure which has distributed learning abilities.In order to set up this proposed FNN, the author recommends two complementary structure/parameter learning algorithms: a two-phase hybrid learning algorithm and an on-line supervised structure/parameter learning algorithm.Both of these learning algorithms require exact supervised training data for learning. In some real-time applications, exact training data may be expensive or even impossible to get. To solve this reinforcement learning problem for real-world applications, a Reinforcement Fuzzy Neural Network (RFNN) is further proposed. Computer simulation examples are presented to illustrate the performance and applicability of the proposed FNN, RFNN and their associated learning algorithms for various applications.
Fuzzy Neural Network Theory and Application
Author: Puyin Liu
Publisher: World Scientific
ISBN: 9789812794215
Category : Computers
Languages : en
Pages : 400
Book Description
This book systematically synthesizes research achievements in the field of fuzzy neural networks in recent years. It also provides a comprehensive presentation of the developments in fuzzy neural networks, with regard to theory as well as their application to system modeling and image restoration. Special emphasis is placed on the fundamental concepts and architecture analysis of fuzzy neural networks. The book is unique in treating all kinds of fuzzy neural networks and their learning algorithms and universal approximations, and employing simulation examples which are carefully designed to help the reader grasp the underlying theory. This is a valuable reference for scientists and engineers working in mathematics, computer science, control or other fields related to information processing. It can also be used as a textbook for graduate courses in applied mathematics, computer science, automatic control and electrical engineering. Contents: Fuzzy Neural Networks for Storing and Classifying; Fuzzy Associative Memory OCo Feedback Networks; Regular Fuzzy Neural Networks; Polygonal Fuzzy Neural Networks; Approximation Analysis of Fuzzy Systems; Stochastic Fuzzy Systems and Approximations; Application of FNN to Image Restoration. Readership: Scientists, engineers and graduate students in applied mathematics, computer science, automatic control and information processing."
Publisher: World Scientific
ISBN: 9789812794215
Category : Computers
Languages : en
Pages : 400
Book Description
This book systematically synthesizes research achievements in the field of fuzzy neural networks in recent years. It also provides a comprehensive presentation of the developments in fuzzy neural networks, with regard to theory as well as their application to system modeling and image restoration. Special emphasis is placed on the fundamental concepts and architecture analysis of fuzzy neural networks. The book is unique in treating all kinds of fuzzy neural networks and their learning algorithms and universal approximations, and employing simulation examples which are carefully designed to help the reader grasp the underlying theory. This is a valuable reference for scientists and engineers working in mathematics, computer science, control or other fields related to information processing. It can also be used as a textbook for graduate courses in applied mathematics, computer science, automatic control and electrical engineering. Contents: Fuzzy Neural Networks for Storing and Classifying; Fuzzy Associative Memory OCo Feedback Networks; Regular Fuzzy Neural Networks; Polygonal Fuzzy Neural Networks; Approximation Analysis of Fuzzy Systems; Stochastic Fuzzy Systems and Approximations; Application of FNN to Image Restoration. Readership: Scientists, engineers and graduate students in applied mathematics, computer science, automatic control and information processing."
Fuzzy and Neuro-Fuzzy Intelligent Systems
Author: Ernest Czogala
Publisher: Physica
ISBN: 3790818534
Category : Computers
Languages : en
Pages : 207
Book Description
Intelligence systems. We perfonn routine tasks on a daily basis, as for example: • recognition of faces of persons (also faces not seen for many years), • identification of dangerous situations during car driving, • deciding to buy or sell stock, • reading hand-written symbols, • discriminating between vines made from Sauvignon Blanc, Syrah or Merlot grapes, and others. Human experts carry out the following: • diagnosing diseases, • localizing faults in electronic circuits, • optimal moves in chess games. It is possible to design artificial systems to replace or "duplicate" the human expert. There are many possible definitions of intelligence systems. One of them is that: an intelligence system is a system able to make decisions that would be regarded as intelligent ifthey were observed in humans. Intelligence systems adapt themselves using some example situations (inputs of a system) and their correct decisions (system's output). The system after this learning phase can make decisions automatically for future situations. This system can also perfonn tasks difficult or impossible to do for humans, as for example: compression of signals and digital channel equalization.
Publisher: Physica
ISBN: 3790818534
Category : Computers
Languages : en
Pages : 207
Book Description
Intelligence systems. We perfonn routine tasks on a daily basis, as for example: • recognition of faces of persons (also faces not seen for many years), • identification of dangerous situations during car driving, • deciding to buy or sell stock, • reading hand-written symbols, • discriminating between vines made from Sauvignon Blanc, Syrah or Merlot grapes, and others. Human experts carry out the following: • diagnosing diseases, • localizing faults in electronic circuits, • optimal moves in chess games. It is possible to design artificial systems to replace or "duplicate" the human expert. There are many possible definitions of intelligence systems. One of them is that: an intelligence system is a system able to make decisions that would be regarded as intelligent ifthey were observed in humans. Intelligence systems adapt themselves using some example situations (inputs of a system) and their correct decisions (system's output). The system after this learning phase can make decisions automatically for future situations. This system can also perfonn tasks difficult or impossible to do for humans, as for example: compression of signals and digital channel equalization.
Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms
Author: Lakhmi C. Jain
Publisher: CRC Press
ISBN: 1000722945
Category : Computers
Languages : en
Pages : 366
Book Description
Artificial neural networks can mimic the biological information-processing mechanism in - a very limited sense. Fuzzy logic provides a basis for representing uncertain and imprecise knowledge and forms a basis for human reasoning. Neural networks display genuine promise in solving problems, but a definitive theoretical basis does not yet exist for their design. Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms integrates neural net, fuzzy system, and evolutionary computing in system design that enables its readers to handle complexity - offsetting the demerits of one paradigm by the merits of another. This book presents specific projects where fusion techniques have been applied. The chapters start with the design of a new fuzzy-neural controller. Remaining chapters discuss the application of expert systems, neural networks, fuzzy control, and evolutionary computing techniques in modern engineering systems. These specific applications include: direct frequency converters electro-hydraulic systems motor control toaster control speech recognition vehicle routing fault diagnosis Asynchronous Transfer Mode (ATM) communications networks telephones for hard-of-hearing people control of gas turbine aero-engines telecommunications systems design Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms covers the spectrum of applications - comprehensively demonstrating the advantages of fusion techniques in industrial applications.
Publisher: CRC Press
ISBN: 1000722945
Category : Computers
Languages : en
Pages : 366
Book Description
Artificial neural networks can mimic the biological information-processing mechanism in - a very limited sense. Fuzzy logic provides a basis for representing uncertain and imprecise knowledge and forms a basis for human reasoning. Neural networks display genuine promise in solving problems, but a definitive theoretical basis does not yet exist for their design. Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms integrates neural net, fuzzy system, and evolutionary computing in system design that enables its readers to handle complexity - offsetting the demerits of one paradigm by the merits of another. This book presents specific projects where fusion techniques have been applied. The chapters start with the design of a new fuzzy-neural controller. Remaining chapters discuss the application of expert systems, neural networks, fuzzy control, and evolutionary computing techniques in modern engineering systems. These specific applications include: direct frequency converters electro-hydraulic systems motor control toaster control speech recognition vehicle routing fault diagnosis Asynchronous Transfer Mode (ATM) communications networks telephones for hard-of-hearing people control of gas turbine aero-engines telecommunications systems design Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms covers the spectrum of applications - comprehensively demonstrating the advantages of fusion techniques in industrial applications.