Author: Hans Hellendoorn
Publisher: Springer Science & Business Media
ISBN: 3642607675
Category : Computers
Languages : en
Pages : 334
Book Description
During the past few years two principally different approaches to the design of fuzzy controllers have emerged: heuristics-based design and model-based design. The main motivation for the heuristics-based design is given by the fact that many industrial processes are still controlled in one of the following two ways: - The process is controlled manually by an experienced operator. - The process is controlled by an automatic control system which needs manual, on-line 'trimming' of its parameters by an experienced operator. In both cases it is enough to translate in terms of a set of fuzzy if-then rules the operator's manual control algorithm or manual on-line 'trimming' strategy in order to obtain an equally good, or even better, wholly automatic fuzzy control system. This implies that the design of a fuzzy controller can only be done after a manual control algorithm or trimming strategy exists. It is admitted in the literature on fuzzy control that the heuristics-based approach to the design of fuzzy controllers is very difficult to apply to multiple-inputjmultiple-output control problems which represent the largest part of challenging industrial process control applications. Furthermore, the heuristics-based design lacks systematic and formally verifiable tuning tech niques. Also, studies of the stability, performance, and robustness of a closed loop system incorporating a heuristics-based fuzzy controller can only be done via extensive simulations.
Fuzzy Model Identification
Author: Hans Hellendoorn
Publisher: Springer Science & Business Media
ISBN: 3642607675
Category : Computers
Languages : en
Pages : 334
Book Description
During the past few years two principally different approaches to the design of fuzzy controllers have emerged: heuristics-based design and model-based design. The main motivation for the heuristics-based design is given by the fact that many industrial processes are still controlled in one of the following two ways: - The process is controlled manually by an experienced operator. - The process is controlled by an automatic control system which needs manual, on-line 'trimming' of its parameters by an experienced operator. In both cases it is enough to translate in terms of a set of fuzzy if-then rules the operator's manual control algorithm or manual on-line 'trimming' strategy in order to obtain an equally good, or even better, wholly automatic fuzzy control system. This implies that the design of a fuzzy controller can only be done after a manual control algorithm or trimming strategy exists. It is admitted in the literature on fuzzy control that the heuristics-based approach to the design of fuzzy controllers is very difficult to apply to multiple-inputjmultiple-output control problems which represent the largest part of challenging industrial process control applications. Furthermore, the heuristics-based design lacks systematic and formally verifiable tuning tech niques. Also, studies of the stability, performance, and robustness of a closed loop system incorporating a heuristics-based fuzzy controller can only be done via extensive simulations.
Publisher: Springer Science & Business Media
ISBN: 3642607675
Category : Computers
Languages : en
Pages : 334
Book Description
During the past few years two principally different approaches to the design of fuzzy controllers have emerged: heuristics-based design and model-based design. The main motivation for the heuristics-based design is given by the fact that many industrial processes are still controlled in one of the following two ways: - The process is controlled manually by an experienced operator. - The process is controlled by an automatic control system which needs manual, on-line 'trimming' of its parameters by an experienced operator. In both cases it is enough to translate in terms of a set of fuzzy if-then rules the operator's manual control algorithm or manual on-line 'trimming' strategy in order to obtain an equally good, or even better, wholly automatic fuzzy control system. This implies that the design of a fuzzy controller can only be done after a manual control algorithm or trimming strategy exists. It is admitted in the literature on fuzzy control that the heuristics-based approach to the design of fuzzy controllers is very difficult to apply to multiple-inputjmultiple-output control problems which represent the largest part of challenging industrial process control applications. Furthermore, the heuristics-based design lacks systematic and formally verifiable tuning tech niques. Also, studies of the stability, performance, and robustness of a closed loop system incorporating a heuristics-based fuzzy controller can only be done via extensive simulations.
Fuzzy Model Identification for Control
Author: Janos Abonyi
Publisher: Springer Science & Business Media
ISBN: 146120027X
Category : Technology & Engineering
Languages : en
Pages : 279
Book Description
This book presents new approaches to constructing fuzzy models for model-based control. Simulated examples and real-world applications from chemical and process engineering illustrate the main methods and techniques. Supporting MATLAB and Simulink files create a computational platform for exploration of the concepts and algorithms.
Publisher: Springer Science & Business Media
ISBN: 146120027X
Category : Technology & Engineering
Languages : en
Pages : 279
Book Description
This book presents new approaches to constructing fuzzy models for model-based control. Simulated examples and real-world applications from chemical and process engineering illustrate the main methods and techniques. Supporting MATLAB and Simulink files create a computational platform for exploration of the concepts and algorithms.
Fuzzy Control and Identification
Author: John H. Lilly
Publisher: John Wiley & Sons
ISBN: 1118097815
Category : Technology & Engineering
Languages : en
Pages : 199
Book Description
This book gives an introduction to basic fuzzy logic and Mamdani and Takagi-Sugeno fuzzy systems. The text shows how these can be used to control complex nonlinear engineering systems, while also also suggesting several approaches to modeling of complex engineering systems with unknown models. Finally, fuzzy modeling and control methods are combined in the book, to create adaptive fuzzy controllers, ending with an example of an obstacle-avoidance controller for an autonomous vehicle using modus ponendo tollens logic.
Publisher: John Wiley & Sons
ISBN: 1118097815
Category : Technology & Engineering
Languages : en
Pages : 199
Book Description
This book gives an introduction to basic fuzzy logic and Mamdani and Takagi-Sugeno fuzzy systems. The text shows how these can be used to control complex nonlinear engineering systems, while also also suggesting several approaches to modeling of complex engineering systems with unknown models. Finally, fuzzy modeling and control methods are combined in the book, to create adaptive fuzzy controllers, ending with an example of an obstacle-avoidance controller for an autonomous vehicle using modus ponendo tollens logic.
Fuzzy Logic, Identification and Predictive Control
Author: Jairo Jose Espinosa Oviedo
Publisher: Springer Science & Business Media
ISBN: 1846280877
Category : Technology & Engineering
Languages : en
Pages : 274
Book Description
Modern industrial processes and systems require adaptable advanced control protocols able to deal with circumstances demanding "judgement” rather than simple "yes/no”, "on/off” responses: circumstances where a linguistic description is often more relevant than a cut-and-dried numerical one. The ability of fuzzy systems to handle numeric and linguistic information within a single framework renders them efficacious for this purpose. Fuzzy Logic, Identification and Predictive Control first shows you how to construct static and dynamic fuzzy models using the numerical data from a variety of real industrial systems and simulations. The second part exploits such models to design control systems employing techniques like data mining. This monograph presents a combination of fuzzy control theory and industrial serviceability that will make a telling contribution to your research whether in the academic or industrial sphere and also serves as a fine roundup of the fuzzy control area for the graduate student.
Publisher: Springer Science & Business Media
ISBN: 1846280877
Category : Technology & Engineering
Languages : en
Pages : 274
Book Description
Modern industrial processes and systems require adaptable advanced control protocols able to deal with circumstances demanding "judgement” rather than simple "yes/no”, "on/off” responses: circumstances where a linguistic description is often more relevant than a cut-and-dried numerical one. The ability of fuzzy systems to handle numeric and linguistic information within a single framework renders them efficacious for this purpose. Fuzzy Logic, Identification and Predictive Control first shows you how to construct static and dynamic fuzzy models using the numerical data from a variety of real industrial systems and simulations. The second part exploits such models to design control systems employing techniques like data mining. This monograph presents a combination of fuzzy control theory and industrial serviceability that will make a telling contribution to your research whether in the academic or industrial sphere and also serves as a fine roundup of the fuzzy control area for the graduate student.
Fuzzy Modeling for Control
Author: Robert Babuška
Publisher: Springer Science & Business Media
ISBN: 9401148686
Category : Mathematics
Languages : en
Pages : 269
Book Description
Rule-based fuzzy modeling has been recognised as a powerful technique for the modeling of partly-known nonlinear systems. Fuzzy models can effectively integrate information from different sources, such as physical laws, empirical models, measurements and heuristics. Application areas of fuzzy models include prediction, decision support, system analysis, control design, etc. Fuzzy Modeling for Control addresses fuzzy modeling from the systems and control engineering points of view. It focuses on the selection of appropriate model structures, on the acquisition of dynamic fuzzy models from process measurements (fuzzy identification), and on the design of nonlinear controllers based on fuzzy models. To automatically generate fuzzy models from measurements, a comprehensive methodology is developed which employs fuzzy clustering techniques to partition the available data into subsets characterized by locally linear behaviour. The relationships between the presented identification method and linear regression are exploited, allowing for the combination of fuzzy logic techniques with standard system identification tools. Attention is paid to the trade-off between the accuracy and transparency of the obtained fuzzy models. Control design based on a fuzzy model of a nonlinear dynamic process is addressed, using the concepts of model-based predictive control and internal model control with an inverted fuzzy model. To this end, methods to exactly invert specific types of fuzzy models are presented. In the context of predictive control, branch-and-bound optimization is applied. The main features of the presented techniques are illustrated by means of simple examples. In addition, three real-world applications are described. Finally, software tools for building fuzzy models from measurements are available from the author.
Publisher: Springer Science & Business Media
ISBN: 9401148686
Category : Mathematics
Languages : en
Pages : 269
Book Description
Rule-based fuzzy modeling has been recognised as a powerful technique for the modeling of partly-known nonlinear systems. Fuzzy models can effectively integrate information from different sources, such as physical laws, empirical models, measurements and heuristics. Application areas of fuzzy models include prediction, decision support, system analysis, control design, etc. Fuzzy Modeling for Control addresses fuzzy modeling from the systems and control engineering points of view. It focuses on the selection of appropriate model structures, on the acquisition of dynamic fuzzy models from process measurements (fuzzy identification), and on the design of nonlinear controllers based on fuzzy models. To automatically generate fuzzy models from measurements, a comprehensive methodology is developed which employs fuzzy clustering techniques to partition the available data into subsets characterized by locally linear behaviour. The relationships between the presented identification method and linear regression are exploited, allowing for the combination of fuzzy logic techniques with standard system identification tools. Attention is paid to the trade-off between the accuracy and transparency of the obtained fuzzy models. Control design based on a fuzzy model of a nonlinear dynamic process is addressed, using the concepts of model-based predictive control and internal model control with an inverted fuzzy model. To this end, methods to exactly invert specific types of fuzzy models are presented. In the context of predictive control, branch-and-bound optimization is applied. The main features of the presented techniques are illustrated by means of simple examples. In addition, three real-world applications are described. Finally, software tools for building fuzzy models from measurements are available from the author.
Fuzzy Systems
Author: Hung T. Nguyen
Publisher: Springer Science & Business Media
ISBN: 1461555051
Category : Mathematics
Languages : en
Pages : 532
Book Description
The analysis and control of complex systems have been the main motivation for the emergence of fuzzy set theory since its inception. It is also a major research field where many applications, especially industrial ones, have made fuzzy logic famous. This unique handbook is devoted to an extensive, organized, and up-to-date presentation of fuzzy systems engineering methods. The book includes detailed material and extensive bibliographies, written by leading experts in the field, on topics such as: Use of fuzzy logic in various control systems. Fuzzy rule-based modeling and its universal approximation properties. Learning and tuning techniques for fuzzy models, using neural networks and genetic algorithms. Fuzzy control methods, including issues such as stability analysis and design techniques, as well as the relationship with traditional linear control. Fuzzy sets relation to the study of chaotic systems, and the fuzzy extension of set-valued approaches to systems modeling through the use of differential inclusions. Fuzzy Systems: Modeling and Control is part of The Handbooks of Fuzzy Sets Series. The series provides a complete picture of contemporary fuzzy set theory and its applications. This volume is a key reference for systems engineers and scientists seeking a guide to the vast amount of literature in fuzzy logic modeling and control.
Publisher: Springer Science & Business Media
ISBN: 1461555051
Category : Mathematics
Languages : en
Pages : 532
Book Description
The analysis and control of complex systems have been the main motivation for the emergence of fuzzy set theory since its inception. It is also a major research field where many applications, especially industrial ones, have made fuzzy logic famous. This unique handbook is devoted to an extensive, organized, and up-to-date presentation of fuzzy systems engineering methods. The book includes detailed material and extensive bibliographies, written by leading experts in the field, on topics such as: Use of fuzzy logic in various control systems. Fuzzy rule-based modeling and its universal approximation properties. Learning and tuning techniques for fuzzy models, using neural networks and genetic algorithms. Fuzzy control methods, including issues such as stability analysis and design techniques, as well as the relationship with traditional linear control. Fuzzy sets relation to the study of chaotic systems, and the fuzzy extension of set-valued approaches to systems modeling through the use of differential inclusions. Fuzzy Systems: Modeling and Control is part of The Handbooks of Fuzzy Sets Series. The series provides a complete picture of contemporary fuzzy set theory and its applications. This volume is a key reference for systems engineers and scientists seeking a guide to the vast amount of literature in fuzzy logic modeling and control.
Fuzzy Modelling
Author: Witold Pedrycz
Publisher: Springer Science & Business Media
ISBN: 9780792397038
Category : Computers
Languages : en
Pages : 424
Book Description
Provides recent information on fuzzy models, identification algorithms, and applications. Section I on relational models includes theory and case studies in areas such as speech recognition, prediction, and ecological systems. Section II on fuzzy neural networks covers fundamentals such as neurocomputing, explains the relationship between fuzzy systems and neural networks, and details architectures. Section III addresses design principles governing the development of rule-based models. Of interest to researchers and practitioners developing models of complex systems. Annotation copyright by Book News, Inc., Portland, OR
Publisher: Springer Science & Business Media
ISBN: 9780792397038
Category : Computers
Languages : en
Pages : 424
Book Description
Provides recent information on fuzzy models, identification algorithms, and applications. Section I on relational models includes theory and case studies in areas such as speech recognition, prediction, and ecological systems. Section II on fuzzy neural networks covers fundamentals such as neurocomputing, explains the relationship between fuzzy systems and neural networks, and details architectures. Section III addresses design principles governing the development of rule-based models. Of interest to researchers and practitioners developing models of complex systems. Annotation copyright by Book News, Inc., Portland, OR
Nonlinear System Identification
Author: Oliver Nelles
Publisher: Springer Science & Business Media
ISBN: 3662043238
Category : Technology & Engineering
Languages : en
Pages : 785
Book Description
Written from an engineering point of view, this book covers the most common and important approaches for the identification of nonlinear static and dynamic systems. The book also provides the reader with the necessary background on optimization techniques, making it fully self-contained. The new edition includes exercises.
Publisher: Springer Science & Business Media
ISBN: 3662043238
Category : Technology & Engineering
Languages : en
Pages : 785
Book Description
Written from an engineering point of view, this book covers the most common and important approaches for the identification of nonlinear static and dynamic systems. The book also provides the reader with the necessary background on optimization techniques, making it fully self-contained. The new edition includes exercises.
Fuzzy Modeling and Fuzzy Control
Author: Huaguang Zhang
Publisher: Springer Science & Business Media
ISBN: 0817644911
Category : Technology & Engineering
Languages : en
Pages : 423
Book Description
Fuzzy logic methodology has proven effective in dealing with complex nonlinear systems containing uncertainties that are otherwise difficult to model. Technology based on this methodology is applicable to many real-world problems, especially in the area of consumer products. This book presents the first comprehensive, unified treatment of fuzzy modeling and fuzzy control, providing tools for the control of complex nonlinear systems. Coverage includes model complexity, model precision, and computing time. This is an excellent reference for electrical, computer, chemical, industrial, civil, manufacturing, mechanical and aeronautical engineers, and also useful for graduate courses in electrical engineering, computer engineering, and computer science.
Publisher: Springer Science & Business Media
ISBN: 0817644911
Category : Technology & Engineering
Languages : en
Pages : 423
Book Description
Fuzzy logic methodology has proven effective in dealing with complex nonlinear systems containing uncertainties that are otherwise difficult to model. Technology based on this methodology is applicable to many real-world problems, especially in the area of consumer products. This book presents the first comprehensive, unified treatment of fuzzy modeling and fuzzy control, providing tools for the control of complex nonlinear systems. Coverage includes model complexity, model precision, and computing time. This is an excellent reference for electrical, computer, chemical, industrial, civil, manufacturing, mechanical and aeronautical engineers, and also useful for graduate courses in electrical engineering, computer engineering, and computer science.
Nonlinear System Identification
Author: Oliver Nelles
Publisher: Springer Nature
ISBN: 3030474399
Category : Science
Languages : en
Pages : 1235
Book Description
This book provides engineers and scientists in academia and industry with a thorough understanding of the underlying principles of nonlinear system identification. It equips them to apply the models and methods discussed to real problems with confidence, while also making them aware of potential difficulties that may arise in practice. Moreover, the book is self-contained, requiring only a basic grasp of matrix algebra, signals and systems, and statistics. Accordingly, it can also serve as an introduction to linear system identification, and provides a practical overview of the major optimization methods used in engineering. The focus is on gaining an intuitive understanding of the subject and the practical application of the techniques discussed. The book is not written in a theorem/proof style; instead, the mathematics is kept to a minimum, and the ideas covered are illustrated with numerous figures, examples, and real-world applications. In the past, nonlinear system identification was a field characterized by a variety of ad-hoc approaches, each applicable only to a very limited class of systems. With the advent of neural networks, fuzzy models, Gaussian process models, and modern structure optimization techniques, a much broader class of systems can now be handled. Although one major aspect of nonlinear systems is that virtually every one is unique, tools have since been developed that allow each approach to be applied to a wide variety of systems.
Publisher: Springer Nature
ISBN: 3030474399
Category : Science
Languages : en
Pages : 1235
Book Description
This book provides engineers and scientists in academia and industry with a thorough understanding of the underlying principles of nonlinear system identification. It equips them to apply the models and methods discussed to real problems with confidence, while also making them aware of potential difficulties that may arise in practice. Moreover, the book is self-contained, requiring only a basic grasp of matrix algebra, signals and systems, and statistics. Accordingly, it can also serve as an introduction to linear system identification, and provides a practical overview of the major optimization methods used in engineering. The focus is on gaining an intuitive understanding of the subject and the practical application of the techniques discussed. The book is not written in a theorem/proof style; instead, the mathematics is kept to a minimum, and the ideas covered are illustrated with numerous figures, examples, and real-world applications. In the past, nonlinear system identification was a field characterized by a variety of ad-hoc approaches, each applicable only to a very limited class of systems. With the advent of neural networks, fuzzy models, Gaussian process models, and modern structure optimization techniques, a much broader class of systems can now be handled. Although one major aspect of nonlinear systems is that virtually every one is unique, tools have since been developed that allow each approach to be applied to a wide variety of systems.