Fuzzy Filters for Image Processing

Fuzzy Filters for Image Processing PDF Author: Mike Nachtegael
Publisher: Springer
ISBN: 354036420X
Category : Technology & Engineering
Languages : en
Pages : 393

Get Book Here

Book Description
The ongoing increase in scale of integration of electronics makes storage and computational power affordable to many applications. Also image process ing systems can benefit from this trend. A variety of algorithms for image processing tasks becomes close at hand. From the whole range of possible approaches, those based on fuzzy logic are the ones this book focusses on. A particular useful property of fuzzy logic techniques is their ability to represent knowledge in a way which is comprehensible to human interpretation. The theory of fuzzy sets and fuzzy logic was initiated in 1965 by Zadeh, and is one of the most developed models to treat imprecision and uncertainty. Instead of the classical approach that an object belongs or does not belong to a set, the concept of a fuzzy set allows a gradual transition from mem bership to nonmembership, providing partial degrees of membership. Fuzzy techniques are often complementary to existing techniques and can contribute to the development of better and more robust methods, as has already been illustrated in numerous scientific branches. The present book resulted from the workshop "Fuzzy Filters for Image Processing" which was organized at the 10th FUZZ-IEEE Conference in Mel bourne, Australia. At this event several speakers have given an overview of the current state-of-the-art of fuzzy filters for image processing. Afterwards, the book has been completed with contributions of other international re searchers.

Fuzzy Filters for Image Processing

Fuzzy Filters for Image Processing PDF Author: Mike Nachtegael
Publisher: Springer
ISBN: 354036420X
Category : Technology & Engineering
Languages : en
Pages : 393

Get Book Here

Book Description
The ongoing increase in scale of integration of electronics makes storage and computational power affordable to many applications. Also image process ing systems can benefit from this trend. A variety of algorithms for image processing tasks becomes close at hand. From the whole range of possible approaches, those based on fuzzy logic are the ones this book focusses on. A particular useful property of fuzzy logic techniques is their ability to represent knowledge in a way which is comprehensible to human interpretation. The theory of fuzzy sets and fuzzy logic was initiated in 1965 by Zadeh, and is one of the most developed models to treat imprecision and uncertainty. Instead of the classical approach that an object belongs or does not belong to a set, the concept of a fuzzy set allows a gradual transition from mem bership to nonmembership, providing partial degrees of membership. Fuzzy techniques are often complementary to existing techniques and can contribute to the development of better and more robust methods, as has already been illustrated in numerous scientific branches. The present book resulted from the workshop "Fuzzy Filters for Image Processing" which was organized at the 10th FUZZ-IEEE Conference in Mel bourne, Australia. At this event several speakers have given an overview of the current state-of-the-art of fuzzy filters for image processing. Afterwards, the book has been completed with contributions of other international re searchers.

Fuzzy Logic for Image Processing

Fuzzy Logic for Image Processing PDF Author: Laura Caponetti
Publisher: Springer
ISBN: 3319441302
Category : Technology & Engineering
Languages : en
Pages : 141

Get Book Here

Book Description
This book provides an introduction to fuzzy logic approaches useful in image processing. The authors start by introducing image processing tasks of low and medium level such as thresholding, enhancement, edge detection, morphological filters, and segmentation and shows how fuzzy logic approaches apply. The book is divided into two parts. The first includes vagueness and ambiguity in digital images, fuzzy image processing, fuzzy rule based systems, and fuzzy clustering. The second part includes applications to image processing, image thresholding, color contrast enhancement, edge detection, morphological analysis, and image segmentation. Throughout, they describe image processing algorithms based on fuzzy logic under methodological aspects in addition to applicative aspects. Implementations in java are provided for the various applications.

Image Analysis and Recognition

Image Analysis and Recognition PDF Author: Aurélio Campilho
Publisher: Springer Science & Business Media
ISBN: 3540698116
Category : Computers
Languages : en
Pages : 1146

Get Book Here

Book Description
Non-linear image processing -- Color photo denoising via hue, saturation and intensity diffusion / Lei He and Chenyang Xu -- Examining the role of scale in the context of the non-local-means filter / Mehran Ebrahimi and Edward R. Vrscay -- Geometrical mutliscale noise resistant method of edge detection / Agnieszka Lisowska -- A simple, general model for the affine self-similarity of images / SImon K. Alexander, Edward R. Vrscay, and Satoshi Tsurumi -- Image and video coding and encryption -- Efficient bit-rate estimation for mode decision of H. 264 / AVC / Shuwei Sun and Shuming Chen -- Introducing a two dimensional measure for watermarking capacity in images / Farzin Yaghmaee and Mansour Jamzad -- Estimating the detectability of small lesions in high resolution MR compressed images / Juan Paz, Marlen Pérez, Iroel Miranda, and Peter Schelkens -- JPEG artifact removal using error distributions of linear coefficient estimates / Mika Inki --

Fuzzy Techniques in Image Processing

Fuzzy Techniques in Image Processing PDF Author: Etienne E. Kerre
Publisher: Physica
ISBN: 379081847X
Category : Computers
Languages : en
Pages : 425

Get Book Here

Book Description
Since time immemorial, vision in general and images in particular have played an important and essential role in human life. Nowadays, the field of image processing also has numerous scientific, commercial, industrial and military applications. All these applications result from the interaction between fun damental scientific research on the one hand, and the development of new and high-standard technology on the other hand. Regarding the scientific com ponent, quite recently the scientific community became familiar with "fuzzy techniques" in image processing, which make use of the framework of fuzzy sets and related theories. The theory of fuzzy sets was initiated in 1965 by Zadeh, and is one of the most developed models to treat imprecision and uncertainty. Instead of the classical approach that an object belongs or does not belong to a set, the concept of a fuzzy set allows a gradual transition from membership to nonmembership, providing partial degrees of member ship. Fuzzy techniques are often complementary to existing techniques and can contribute to the development of better and more robust methods, as has already been illustrated in numerous scientific branches. With this vol ume, we want to demonstrate that the introduction and application of fuzzy techniques can also be very successful in the area of image processing. This book contains high-quality contributions of over 30 field experts, covering a wide range of both theoretical and practical applications of fuzzy techniques in image processing.

Fuzzy Image Processing and Applications with MATLAB

Fuzzy Image Processing and Applications with MATLAB PDF Author: Tamalika Chaira
Publisher: CRC Press
ISBN: 1351834215
Category : Technology & Engineering
Languages : en
Pages : 232

Get Book Here

Book Description
In contrast to classical image analysis methods that employ "crisp" mathematics, fuzzy set techniques provide an elegant foundation and a set of rich methodologies for diverse image-processing tasks. However, a solid understanding of fuzzy processing requires a firm grasp of essential principles and background knowledge. Fuzzy Image Processing and Applications with MATLAB® presents the integral science and essential mathematics behind this exciting and dynamic branch of image processing, which is becoming increasingly important to applications in areas such as remote sensing, medical imaging, and video surveillance, to name a few. Many texts cover the use of crisp sets, but this book stands apart by exploring the explosion of interest and significant growth in fuzzy set image processing. The distinguished authors clearly lay out theoretical concepts and applications of fuzzy set theory and their impact on areas such as enhancement, segmentation, filtering, edge detection, content-based image retrieval, pattern recognition, and clustering. They describe all components of fuzzy, detailing preprocessing, threshold detection, and match-based segmentation. Minimize Processing Errors Using Dynamic Fuzzy Set Theory This book serves as a primer on MATLAB and demonstrates how to implement it in fuzzy image processing methods. It illustrates how the code can be used to improve calculations that help prevent or deal with imprecision—whether it is in the grey level of the image, geometry of an object, definition of an object’s edges or boundaries, or in knowledge representation, object recognition, or image interpretation. The text addresses these considerations by applying fuzzy set theory to image thresholding, segmentation, edge detection, enhancement, clustering, color retrieval, clustering in pattern recognition, and other image processing operations. Highlighting key ideas, the authors present the experimental results of their own new fuzzy approaches and those suggested by different authors, offering data and insights that will be useful to teachers, scientists, and engineers, among others.

Soft Computing for Image Processing

Soft Computing for Image Processing PDF Author: Sankar K. Pal
Publisher: Physica
ISBN: 3790818585
Category : Computers
Languages : en
Pages : 600

Get Book Here

Book Description
Any task that involves decision-making can benefit from soft computing techniques which allow premature decisions to be deferred. The processing and analysis of images is no exception to this rule. In the classical image analysis paradigm, the first step is nearly always some sort of segmentation process in which the image is divided into (hopefully, meaningful) parts. It was pointed out nearly 30 years ago by Prewitt (1] that the decisions involved in image segmentation could be postponed by regarding the image parts as fuzzy, rather than crisp, subsets of the image. It was also realized very early that many basic properties of and operations on image subsets could be extended to fuzzy subsets; for example, the classic paper on fuzzy sets by Zadeh [2] discussed the "set algebra" of fuzzy sets (using sup for union and inf for intersection), and extended the defmition of convexity to fuzzy sets. These and similar ideas allowed many of the methods of image analysis to be generalized to fuzzy image parts. For are cent review on geometric description of fuzzy sets see, e. g. , [3]. Fuzzy methods are also valuable in image processing and coding, where learning processes can be important in choosing the parameters of filters, quantizers, etc.

Advanced Image Processing Techniques and Applications

Advanced Image Processing Techniques and Applications PDF Author: Kumar, N. Suresh
Publisher: IGI Global
ISBN: 1522520546
Category : Computers
Languages : en
Pages : 459

Get Book Here

Book Description
Today, the scope of image processing and recognition has broadened due to the gap in scientific visualization. Thus, new imaging techniques have developed, and it is imperative to study this progression for optimal utilization. Advanced Image Processing Techniques and Applications is an essential reference publication for the latest research on digital image processing advancements. Featuring expansive coverage on a broad range of topics and perspectives, such as image and video steganography, pattern recognition, and artificial vision, this publication is ideally designed for scientists, professionals, researchers, and academicians seeking current research on solutions for new challenges in image processing.

Image Processing

Image Processing PDF Author: Yung-Sheng Chen
Publisher: BoD – Books on Demand
ISBN: 9533070269
Category : Computers
Languages : en
Pages : 530

Get Book Here

Book Description
There are six sections in this book. The first section presents basic image processing techniques, such as image acquisition, storage, retrieval, transformation, filtering, and parallel computing. Then, some applications, such as road sign recognition, air quality monitoring, remote sensed image analysis, and diagnosis of industrial parts are considered. Subsequently, the application of image processing for the special eye examination and a newly three-dimensional digital camera are introduced. On the other hand, the section of medical imaging will show the applications of nuclear imaging, ultrasound imaging, and biology. The section of neural fuzzy presents the topics of image recognition, self-learning, image restoration, as well as evolutionary. The final section will show how to implement the hardware design based on the SoC or FPGA to accelerate image processing.

Nonlinear Image Processing

Nonlinear Image Processing PDF Author: Sanjit Mitra
Publisher: Academic Press
ISBN: 9780125004510
Category : Computers
Languages : en
Pages : 480

Get Book Here

Book Description
This state-of-the-art book deals with the most important aspects of non-linear imaging challenges. The need for engineering and mathematical methods is essential for defining non-linear effects involved in such areas as computer vision, optical imaging, computer pattern recognition, and industrial automation challenges.

Computational Intelligence in Image Processing

Computational Intelligence in Image Processing PDF Author: Amitava Chatterjee
Publisher: Springer Science & Business Media
ISBN: 3642306217
Category : Technology & Engineering
Languages : en
Pages : 303

Get Book Here

Book Description
Computational intelligence based techniques have firmly established themselves as viable, alternate, mathematical tools for more than a decade. They have been extensively employed in many systems and application domains, among these signal processing, automatic control, industrial and consumer electronics, robotics, finance, manufacturing systems, electric power systems, and power electronics. Image processing is also an extremely potent area which has attracted the attention of many researchers who are interested in the development of new computational intelligence-based techniques and their suitable applications, in both research problems and in real-world problems. Part I of the book discusses several image preprocessing algorithms; Part II broadly covers image compression algorithms; Part III demonstrates how computational intelligence-based techniques can be effectively utilized for image analysis purposes; and Part IV shows how pattern recognition, classification and clustering-based techniques can be developed for the purpose of image inferencing. The book offers a unified view of the modern computational intelligence techniques required to solve real-world problems and it is suitable as a reference for engineers, researchers and graduate students.