Fuzzy Control and Identification

Fuzzy Control and Identification PDF Author: John H. Lilly
Publisher: John Wiley & Sons
ISBN: 1118097815
Category : Technology & Engineering
Languages : en
Pages : 199

Get Book Here

Book Description
This book gives an introduction to basic fuzzy logic and Mamdani and Takagi-Sugeno fuzzy systems. The text shows how these can be used to control complex nonlinear engineering systems, while also also suggesting several approaches to modeling of complex engineering systems with unknown models. Finally, fuzzy modeling and control methods are combined in the book, to create adaptive fuzzy controllers, ending with an example of an obstacle-avoidance controller for an autonomous vehicle using modus ponendo tollens logic.

Fuzzy Control and Identification

Fuzzy Control and Identification PDF Author: John H. Lilly
Publisher: John Wiley & Sons
ISBN: 1118097815
Category : Technology & Engineering
Languages : en
Pages : 199

Get Book Here

Book Description
This book gives an introduction to basic fuzzy logic and Mamdani and Takagi-Sugeno fuzzy systems. The text shows how these can be used to control complex nonlinear engineering systems, while also also suggesting several approaches to modeling of complex engineering systems with unknown models. Finally, fuzzy modeling and control methods are combined in the book, to create adaptive fuzzy controllers, ending with an example of an obstacle-avoidance controller for an autonomous vehicle using modus ponendo tollens logic.

Fuzzy Logic, Identification and Predictive Control

Fuzzy Logic, Identification and Predictive Control PDF Author: Jairo Jose Espinosa Oviedo
Publisher: Springer Science & Business Media
ISBN: 1846280877
Category : Technology & Engineering
Languages : en
Pages : 274

Get Book Here

Book Description
Modern industrial processes and systems require adaptable advanced control protocols able to deal with circumstances demanding "judgement” rather than simple "yes/no”, "on/off” responses: circumstances where a linguistic description is often more relevant than a cut-and-dried numerical one. The ability of fuzzy systems to handle numeric and linguistic information within a single framework renders them efficacious for this purpose. Fuzzy Logic, Identification and Predictive Control first shows you how to construct static and dynamic fuzzy models using the numerical data from a variety of real industrial systems and simulations. The second part exploits such models to design control systems employing techniques like data mining. This monograph presents a combination of fuzzy control theory and industrial serviceability that will make a telling contribution to your research whether in the academic or industrial sphere and also serves as a fine roundup of the fuzzy control area for the graduate student.

Fuzzy Control

Fuzzy Control PDF Author: Kevin M. Passino
Publisher: Prentice Hall
ISBN:
Category : Computers
Languages : en
Pages : 506

Get Book Here

Book Description
Introduction; Fuzzy control: the basics; Case studies in design and implementation; nonlinear analysis; Fuzzy identification and estimation; Adaptive fuzzy control; Fuzzy supervisory control; Perspectives on fuzzy control.

Fuzzy Control and Fuzzy Systems

Fuzzy Control and Fuzzy Systems PDF Author: Witold Pedrycz
Publisher: *Research Studies Press
ISBN:
Category : Computers
Languages : en
Pages : 376

Get Book Here

Book Description
Examines the methodology and algorithms of fuzzy sets considered mainly in the context of control engineering and system modelling and analysis. Special emphasis is focused on the processing of fuzzy information realized with the aid of fuzzy relational structures and their extensions.

Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems

Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems PDF Author: Guanrong Chen
Publisher: CRC Press
ISBN: 1420039814
Category : Mathematics
Languages : en
Pages : 329

Get Book Here

Book Description
In the early 1970s, fuzzy systems and fuzzy control theories added a new dimension to control systems engineering. From its beginnings as mostly heuristic and somewhat ad hoc, more recent and rigorous approaches to fuzzy control theory have helped make it an integral part of modern control theory and produced many exciting results. Yesterday's "art

Fuzzy Model Identification

Fuzzy Model Identification PDF Author: Hans Hellendoorn
Publisher: Springer
ISBN:
Category : Computers
Languages : en
Pages : 350

Get Book Here

Book Description
Introduction; General overview; Fuzzy identification from a grey box modeling point of view; Clustering methods; Constructing fuzzy models by product space clustering; Identification of Takagi-Sugeno fuzzy models via clustering and Hough transform; Rapid prototyping of fuzzy models based on hierarchical clustering; Neural networks; Fuzzy identification using methods of intelligent data analysis; Identification of singleton fuzzy models via fuzzy hyperrectangular composite NN; Genetic algorithms; Identification of linguistic fuzzy models by means of genetic algorithms.; Optimization of fuzzy models by global numeric optimizaton; Artificial intelligence; Identification of linguistic fuzzy models based on learning.

Analysis and Synthesis of Fuzzy Control Systems

Analysis and Synthesis of Fuzzy Control Systems PDF Author: Gang Feng
Publisher: CRC Press
ISBN: 1420092650
Category : Technology & Engineering
Languages : en
Pages : 302

Get Book Here

Book Description
Fuzzy logic control (FLC) has proven to be a popular control methodology for many complex systems in industry, and is often used with great success as an alternative to conventional control techniques. However, because it is fundamentally model free, conventional FLC suffers from a lack of tools for systematic stability analysis and controller design. To address this problem, many model-based fuzzy control approaches have been developed, with the fuzzy dynamic model or the Takagi and Sugeno (T–S) fuzzy model-based approaches receiving the greatest attention. Analysis and Synthesis of Fuzzy Control Systems: A Model-Based Approach offers a unique reference devoted to the systematic analysis and synthesis of model-based fuzzy control systems. After giving a brief review of the varieties of FLC, including the T–S fuzzy model-based control, it fully explains the fundamental concepts of fuzzy sets, fuzzy logic, and fuzzy systems. This enables the book to be self-contained and provides a basis for later chapters, which cover: T–S fuzzy modeling and identification via nonlinear models or data Stability analysis of T–S fuzzy systems Stabilization controller synthesis as well as robust H∞ and observer and output feedback controller synthesis Robust controller synthesis of uncertain T–S fuzzy systems Time-delay T–S fuzzy systems Fuzzy model predictive control Robust fuzzy filtering Adaptive control of T–S fuzzy systems A reference for scientists and engineers in systems and control, the book also serves the needs of graduate students exploring fuzzy logic control. It readily demonstrates that conventional control technology and fuzzy logic control can be elegantly combined and further developed so that disadvantages of conventional FLC can be avoided and the horizon of conventional control technology greatly extended. Many chapters feature application simulation examples and practical numerical examples based on MATLAB®.

Fuzzy System Identification and Adaptive Control

Fuzzy System Identification and Adaptive Control PDF Author: Ruiyun Qi
Publisher: Springer
ISBN: 9783030198848
Category : Technology & Engineering
Languages : en
Pages : 0

Get Book Here

Book Description
This book provides readers with a systematic and unified framework for identification and adaptive control of Takagi–Sugeno (T–S) fuzzy systems. Its design techniques help readers applying these powerful tools to solve challenging nonlinear control problems. The book embodies a systematic study of fuzzy system identification and control problems, using T–S fuzzy system tools for both function approximation and feedback control of nonlinear systems. Alongside this framework, the book also: introduces basic concepts of fuzzy sets, logic and inference system; discusses important properties of T–S fuzzy systems; develops offline and online identification algorithms for T–S fuzzy systems; investigates the various controller structures and corresponding design conditions for adaptive control of continuous-time T–S fuzzy systems; develops adaptive control algorithms for discrete-time input–output form T–S fuzzy systems with much relaxed design conditions, and discrete-time state-space T–S fuzzy systems; and designs stable parameter-adaptation algorithms for both linearly and nonlinearly parameterized T–S fuzzy systems. The authors address adaptive fault compensation problems for T–S fuzzy systems subject to actuator faults. They cover a broad spectrum of related technical topics and to develop a substantial set of adaptive nonlinear system control tools. Fuzzy System Identification and Adaptive Control helps engineers in the mechanical, electrical and aerospace fields, to solve complex control design problems. The book can be used as a reference for researchers and academics in nonlinear, intelligent, adaptive and fault-tolerant control.

Fuzzy Evidence in Identification, Forecasting and Diagnosis

Fuzzy Evidence in Identification, Forecasting and Diagnosis PDF Author: Alexander P. Rotshtein
Publisher: Springer Science & Business Media
ISBN: 3642257852
Category : Computers
Languages : en
Pages : 323

Get Book Here

Book Description
The purpose of this book is to present a methodology for designing and tuning fuzzy expert systems in order to identify nonlinear objects; that is, to build input-output models using expert and experimental information. The results of these identifications are used for direct and inverse fuzzy evidence in forecasting and diagnosis problem solving. The book is organised as follows: Chapter 1 presents the basic knowledge about fuzzy sets, genetic algorithms and neural nets necessary for a clear understanding of the rest of this book. Chapter 2 analyzes direct fuzzy inference based on fuzzy if-then rules. Chapter 3 is devoted to the tuning of fuzzy rules for direct inference using genetic algorithms and neural nets. Chapter 4 presents models and algorithms for extracting fuzzy rules from experimental data. Chapter 5 describes a method for solving fuzzy logic equations necessary for the inverse fuzzy inference in diagnostic systems. Chapters 6 and 7 are devoted to inverse fuzzy inference based on fuzzy relations and fuzzy rules. Chapter 8 presents a method for extracting fuzzy relations from data. All the algorithms presented in Chapters 2-8 are validated by computer experiments and illustrated by solving medical and technical forecasting and diagnosis problems. Finally, Chapter 9 includes applications of the proposed methodology in dynamic and inventory control systems, prediction of results of football games, decision making in road accident investigations, project management and reliability analysis.

Fuzzy Systems

Fuzzy Systems PDF Author: Hung T. Nguyen
Publisher: Springer Science & Business Media
ISBN: 1461555051
Category : Mathematics
Languages : en
Pages : 532

Get Book Here

Book Description
The analysis and control of complex systems have been the main motivation for the emergence of fuzzy set theory since its inception. It is also a major research field where many applications, especially industrial ones, have made fuzzy logic famous. This unique handbook is devoted to an extensive, organized, and up-to-date presentation of fuzzy systems engineering methods. The book includes detailed material and extensive bibliographies, written by leading experts in the field, on topics such as: Use of fuzzy logic in various control systems. Fuzzy rule-based modeling and its universal approximation properties. Learning and tuning techniques for fuzzy models, using neural networks and genetic algorithms. Fuzzy control methods, including issues such as stability analysis and design techniques, as well as the relationship with traditional linear control. Fuzzy sets relation to the study of chaotic systems, and the fuzzy extension of set-valued approaches to systems modeling through the use of differential inclusions. Fuzzy Systems: Modeling and Control is part of The Handbooks of Fuzzy Sets Series. The series provides a complete picture of contemporary fuzzy set theory and its applications. This volume is a key reference for systems engineers and scientists seeking a guide to the vast amount of literature in fuzzy logic modeling and control.