Author: David F. Anderson
Publisher: Cambridge University Press
ISBN: 110824498X
Category : Mathematics
Languages : en
Pages : 447
Book Description
This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.
Introduction to Probability
Author: David F. Anderson
Publisher: Cambridge University Press
ISBN: 110824498X
Category : Mathematics
Languages : en
Pages : 447
Book Description
This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.
Publisher: Cambridge University Press
ISBN: 110824498X
Category : Mathematics
Languages : en
Pages : 447
Book Description
This classroom-tested textbook is an introduction to probability theory, with the right balance between mathematical precision, probabilistic intuition, and concrete applications. Introduction to Probability covers the material precisely, while avoiding excessive technical details. After introducing the basic vocabulary of randomness, including events, probabilities, and random variables, the text offers the reader a first glimpse of the major theorems of the subject: the law of large numbers and the central limit theorem. The important probability distributions are introduced organically as they arise from applications. The discrete and continuous sides of probability are treated together to emphasize their similarities. Intended for students with a calculus background, the text teaches not only the nuts and bolts of probability theory and how to solve specific problems, but also why the methods of solution work.
Fundamentals of Probability: A First Course
Author: Anirban DasGupta
Publisher: Springer Science & Business Media
ISBN: 1441957804
Category : Mathematics
Languages : en
Pages : 457
Book Description
Probability theory is one branch of mathematics that is simultaneously deep and immediately applicable in diverse areas of human endeavor. It is as fundamental as calculus. Calculus explains the external world, and probability theory helps predict a lot of it. In addition, problems in probability theory have an innate appeal, and the answers are often structured and strikingly beautiful. A solid background in probability theory and probability models will become increasingly more useful in the twenty-?rst century, as dif?cult new problems emerge, that will require more sophisticated models and analysis. Thisisa text onthe fundamentalsof thetheoryofprobabilityat anundergraduate or ?rst-year graduate level for students in science, engineering,and economics. The only mathematical background required is knowledge of univariate and multiva- ate calculus and basic linear algebra. The book covers all of the standard topics in basic probability, such as combinatorial probability, discrete and continuous distributions, moment generating functions, fundamental probability inequalities, the central limit theorem, and joint and conditional distributions of discrete and continuous random variables. But it also has some unique features and a forwa- looking feel.
Publisher: Springer Science & Business Media
ISBN: 1441957804
Category : Mathematics
Languages : en
Pages : 457
Book Description
Probability theory is one branch of mathematics that is simultaneously deep and immediately applicable in diverse areas of human endeavor. It is as fundamental as calculus. Calculus explains the external world, and probability theory helps predict a lot of it. In addition, problems in probability theory have an innate appeal, and the answers are often structured and strikingly beautiful. A solid background in probability theory and probability models will become increasingly more useful in the twenty-?rst century, as dif?cult new problems emerge, that will require more sophisticated models and analysis. Thisisa text onthe fundamentalsof thetheoryofprobabilityat anundergraduate or ?rst-year graduate level for students in science, engineering,and economics. The only mathematical background required is knowledge of univariate and multiva- ate calculus and basic linear algebra. The book covers all of the standard topics in basic probability, such as combinatorial probability, discrete and continuous distributions, moment generating functions, fundamental probability inequalities, the central limit theorem, and joint and conditional distributions of discrete and continuous random variables. But it also has some unique features and a forwa- looking feel.
Lectures on Probability Theory and Mathematical Statistics - 3rd Edition
Author: Marco Taboga
Publisher: Createspace Independent Publishing Platform
ISBN: 9781981369195
Category : Mathematical statistics
Languages : en
Pages : 670
Book Description
The book is a collection of 80 short and self-contained lectures covering most of the topics that are usually taught in intermediate courses in probability theory and mathematical statistics. There are hundreds of examples, solved exercises and detailed derivations of important results. The step-by-step approach makes the book easy to understand and ideal for self-study. One of the main aims of the book is to be a time saver: it contains several results and proofs, especially on probability distributions, that are hard to find in standard references and are scattered here and there in more specialistic books. The topics covered by the book are as follows. PART 1 - MATHEMATICAL TOOLS: set theory, permutations, combinations, partitions, sequences and limits, review of differentiation and integration rules, the Gamma and Beta functions. PART 2 - FUNDAMENTALS OF PROBABILITY: events, probability, independence, conditional probability, Bayes' rule, random variables and random vectors, expected value, variance, covariance, correlation, covariance matrix, conditional distributions and conditional expectation, independent variables, indicator functions. PART 3 - ADDITIONAL TOPICS IN PROBABILITY THEORY: probabilistic inequalities, construction of probability distributions, transformations of probability distributions, moments and cross-moments, moment generating functions, characteristic functions. PART 4 - PROBABILITY DISTRIBUTIONS: Bernoulli, binomial, Poisson, uniform, exponential, normal, Chi-square, Gamma, Student's t, F, multinomial, multivariate normal, multivariate Student's t, Wishart. PART 5 - MORE DETAILS ABOUT THE NORMAL DISTRIBUTION: linear combinations, quadratic forms, partitions. PART 6 - ASYMPTOTIC THEORY: sequences of random vectors and random variables, pointwise convergence, almost sure convergence, convergence in probability, mean-square convergence, convergence in distribution, relations between modes of convergence, Laws of Large Numbers, Central Limit Theorems, Continuous Mapping Theorem, Slutsky's Theorem. PART 7 - FUNDAMENTALS OF STATISTICS: statistical inference, point estimation, set estimation, hypothesis testing, statistical inferences about the mean, statistical inferences about the variance.
Publisher: Createspace Independent Publishing Platform
ISBN: 9781981369195
Category : Mathematical statistics
Languages : en
Pages : 670
Book Description
The book is a collection of 80 short and self-contained lectures covering most of the topics that are usually taught in intermediate courses in probability theory and mathematical statistics. There are hundreds of examples, solved exercises and detailed derivations of important results. The step-by-step approach makes the book easy to understand and ideal for self-study. One of the main aims of the book is to be a time saver: it contains several results and proofs, especially on probability distributions, that are hard to find in standard references and are scattered here and there in more specialistic books. The topics covered by the book are as follows. PART 1 - MATHEMATICAL TOOLS: set theory, permutations, combinations, partitions, sequences and limits, review of differentiation and integration rules, the Gamma and Beta functions. PART 2 - FUNDAMENTALS OF PROBABILITY: events, probability, independence, conditional probability, Bayes' rule, random variables and random vectors, expected value, variance, covariance, correlation, covariance matrix, conditional distributions and conditional expectation, independent variables, indicator functions. PART 3 - ADDITIONAL TOPICS IN PROBABILITY THEORY: probabilistic inequalities, construction of probability distributions, transformations of probability distributions, moments and cross-moments, moment generating functions, characteristic functions. PART 4 - PROBABILITY DISTRIBUTIONS: Bernoulli, binomial, Poisson, uniform, exponential, normal, Chi-square, Gamma, Student's t, F, multinomial, multivariate normal, multivariate Student's t, Wishart. PART 5 - MORE DETAILS ABOUT THE NORMAL DISTRIBUTION: linear combinations, quadratic forms, partitions. PART 6 - ASYMPTOTIC THEORY: sequences of random vectors and random variables, pointwise convergence, almost sure convergence, convergence in probability, mean-square convergence, convergence in distribution, relations between modes of convergence, Laws of Large Numbers, Central Limit Theorems, Continuous Mapping Theorem, Slutsky's Theorem. PART 7 - FUNDAMENTALS OF STATISTICS: statistical inference, point estimation, set estimation, hypothesis testing, statistical inferences about the mean, statistical inferences about the variance.
Fundamentals of Probability and Statistics for Engineers
Author: T. T. Soong
Publisher: John Wiley & Sons
ISBN: 0470868155
Category : Mathematics
Languages : en
Pages : 406
Book Description
This textbook differs from others in the field in that it has been prepared very much with students and their needs in mind, having been classroom tested over many years. It is a true “learner’s book” made for students who require a deeper understanding of probability and statistics. It presents the fundamentals of the subject along with concepts of probabilistic modelling, and the process of model selection, verification and analysis. Furthermore, the inclusion of more than 100 examples and 200 exercises (carefully selected from a wide range of topics), along with a solutions manual for instructors, means that this text is of real value to students and lecturers across a range of engineering disciplines. Key features: Presents the fundamentals in probability and statistics along with relevant applications. Explains the concept of probabilistic modelling and the process of model selection, verification and analysis. Definitions and theorems are carefully stated and topics rigorously treated. Includes a chapter on regression analysis. Covers design of experiments. Demonstrates practical problem solving throughout the book with numerous examples and exercises purposely selected from a variety of engineering fields. Includes an accompanying online Solutions Manual for instructors containing complete step-by-step solutions to all problems.
Publisher: John Wiley & Sons
ISBN: 0470868155
Category : Mathematics
Languages : en
Pages : 406
Book Description
This textbook differs from others in the field in that it has been prepared very much with students and their needs in mind, having been classroom tested over many years. It is a true “learner’s book” made for students who require a deeper understanding of probability and statistics. It presents the fundamentals of the subject along with concepts of probabilistic modelling, and the process of model selection, verification and analysis. Furthermore, the inclusion of more than 100 examples and 200 exercises (carefully selected from a wide range of topics), along with a solutions manual for instructors, means that this text is of real value to students and lecturers across a range of engineering disciplines. Key features: Presents the fundamentals in probability and statistics along with relevant applications. Explains the concept of probabilistic modelling and the process of model selection, verification and analysis. Definitions and theorems are carefully stated and topics rigorously treated. Includes a chapter on regression analysis. Covers design of experiments. Demonstrates practical problem solving throughout the book with numerous examples and exercises purposely selected from a variety of engineering fields. Includes an accompanying online Solutions Manual for instructors containing complete step-by-step solutions to all problems.
Fundamentals of Probability Theory and Mathematical Statistics
Author: Vladimir Efimovich Gmurman
Publisher:
ISBN:
Category : Mathematical statistics
Languages : en
Pages : 276
Book Description
Publisher:
ISBN:
Category : Mathematical statistics
Languages : en
Pages : 276
Book Description
Fundamentals of Applied Probability Theory
Author: Alvin William Drake
Publisher:
ISBN:
Category :
Languages : en
Pages : 0
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 0
Book Description
Fundamentals of Mathematical Statistics
Author: Hung T. Nguyen
Publisher: Springer Science & Business Media
ISBN: 1461210135
Category : Mathematics
Languages : en
Pages : 442
Book Description
This is the first half of a text for a two semester course in mathematical statistics at the senior/graduate level for those who need a strong background in statistics as an essential tool in their career. To study this text, the reader needs a thorough familiarity with calculus including such things as Jacobians and series but somewhat less intense familiarity with matrices including quadratic forms and eigenvalues. For convenience, these lecture notes were divided into two parts: Volume I, Probability for Statistics, for the first semester, and Volume II, Statistical Inference, for the second. We suggest that the following distinguish this text from other introductions to mathematical statistics. 1. The most obvious thing is the layout. We have designed each lesson for the (U.S.) 50 minute class; those who study independently probably need the traditional three hours for each lesson. Since we have more than (the U.S. again) 90 lessons, some choices have to be made. In the table of contents, we have used a * to designate those lessons which are "interesting but not essential" (INE) and may be omitted from a general course; some exercises and proofs in other lessons are also "INE". We have made lessons of some material which other writers might stuff into appendices. Incorporating this freedom of choice has led to some redundancy, mostly in definitions, which may be beneficial.
Publisher: Springer Science & Business Media
ISBN: 1461210135
Category : Mathematics
Languages : en
Pages : 442
Book Description
This is the first half of a text for a two semester course in mathematical statistics at the senior/graduate level for those who need a strong background in statistics as an essential tool in their career. To study this text, the reader needs a thorough familiarity with calculus including such things as Jacobians and series but somewhat less intense familiarity with matrices including quadratic forms and eigenvalues. For convenience, these lecture notes were divided into two parts: Volume I, Probability for Statistics, for the first semester, and Volume II, Statistical Inference, for the second. We suggest that the following distinguish this text from other introductions to mathematical statistics. 1. The most obvious thing is the layout. We have designed each lesson for the (U.S.) 50 minute class; those who study independently probably need the traditional three hours for each lesson. Since we have more than (the U.S. again) 90 lessons, some choices have to be made. In the table of contents, we have used a * to designate those lessons which are "interesting but not essential" (INE) and may be omitted from a general course; some exercises and proofs in other lessons are also "INE". We have made lessons of some material which other writers might stuff into appendices. Incorporating this freedom of choice has led to some redundancy, mostly in definitions, which may be beneficial.
Fundamentals of Mathematical Statistics
Author: S.C. Gupta
Publisher: Sultan Chand & Sons
ISBN: 9351611736
Category : Mathematics
Languages : en
Pages : 22
Book Description
Knowledge updating is a never-ending process and so should be the revision of an effective textbook. The book originally written fifty years ago has, during the intervening period, been revised and reprinted several times. The authors have, however, been thinking, for the last few years that the book needed not only a thorough revision but rather a substantial rewriting. They now take great pleasure in presenting to the readers the twelfth, thoroughly revised and enlarged, Golden Jubilee edition of the book. The subject-matter in the entire book has been re-written in the light of numerous criticisms and suggestions received from the users of the earlier editions in India and abroad. The basis of this revision has been the emergence of new literature on the subject, the constructive feedback from students and teaching fraternity, as well as those changes that have been made in the syllabi and/or the pattern of examination papers of numerous universities. Knowledge updating is a never-ending process and so should be the revision of an effective textbook. The book originally written fifty years ago has, during the intervening period, been revised and reprinted several times. The authors have, however, been thinking, for the last few years that the book needed not only a thorough revision but rather a substantial rewriting. They now take great pleasure in presenting to the readers the twelfth, thoroughly revised and enlarged, Golden Jubilee edition of the book. The subject-matter in the entire book has been re-written in the light of numerous criticisms and suggestions received from the users of the earlier editions in India and abroad. The basis of this revision has been the emergence of new literature on the subject, the constructive feedback from students and teaching fraternity, as well as those changes that have been made in the syllabi and/or the pattern of examination papers of numerous universities. Knowledge updating is a never-ending process and so should be the revision of an effective textbook. The book originally written fifty years ago has, during the intervening period, been revised and reprinted several times. The authors have, however, been thinking, for the last few years that the book needed not only a thorough revision but rather a substantial rewriting. They now take great pleasure in presenting to the readers the twelfth, thoroughly revised and enlarged, Golden Jubilee edition of the book. The subject-matter in the entire book has been re-written in the light of numerous criticisms and suggestions received from the users of the earlier editions in India and abroad. The basis of this revision has been the emergence of new literature on the subject, the constructive feedback from students and teaching fraternity, as well as those changes that have been made in the syllabi and/or the pattern of examination papers of numerous universities. Some prominent additions are given below: 1. Variance of Degenerate Random Variable 2. Approximate Expression for Expectation and Variance 3. Lyapounov’s Inequality 4. Holder’s Inequality 5. Minkowski’s Inequality 6. Double Expectation Rule or Double-E Rule and many others
Publisher: Sultan Chand & Sons
ISBN: 9351611736
Category : Mathematics
Languages : en
Pages : 22
Book Description
Knowledge updating is a never-ending process and so should be the revision of an effective textbook. The book originally written fifty years ago has, during the intervening period, been revised and reprinted several times. The authors have, however, been thinking, for the last few years that the book needed not only a thorough revision but rather a substantial rewriting. They now take great pleasure in presenting to the readers the twelfth, thoroughly revised and enlarged, Golden Jubilee edition of the book. The subject-matter in the entire book has been re-written in the light of numerous criticisms and suggestions received from the users of the earlier editions in India and abroad. The basis of this revision has been the emergence of new literature on the subject, the constructive feedback from students and teaching fraternity, as well as those changes that have been made in the syllabi and/or the pattern of examination papers of numerous universities. Knowledge updating is a never-ending process and so should be the revision of an effective textbook. The book originally written fifty years ago has, during the intervening period, been revised and reprinted several times. The authors have, however, been thinking, for the last few years that the book needed not only a thorough revision but rather a substantial rewriting. They now take great pleasure in presenting to the readers the twelfth, thoroughly revised and enlarged, Golden Jubilee edition of the book. The subject-matter in the entire book has been re-written in the light of numerous criticisms and suggestions received from the users of the earlier editions in India and abroad. The basis of this revision has been the emergence of new literature on the subject, the constructive feedback from students and teaching fraternity, as well as those changes that have been made in the syllabi and/or the pattern of examination papers of numerous universities. Knowledge updating is a never-ending process and so should be the revision of an effective textbook. The book originally written fifty years ago has, during the intervening period, been revised and reprinted several times. The authors have, however, been thinking, for the last few years that the book needed not only a thorough revision but rather a substantial rewriting. They now take great pleasure in presenting to the readers the twelfth, thoroughly revised and enlarged, Golden Jubilee edition of the book. The subject-matter in the entire book has been re-written in the light of numerous criticisms and suggestions received from the users of the earlier editions in India and abroad. The basis of this revision has been the emergence of new literature on the subject, the constructive feedback from students and teaching fraternity, as well as those changes that have been made in the syllabi and/or the pattern of examination papers of numerous universities. Some prominent additions are given below: 1. Variance of Degenerate Random Variable 2. Approximate Expression for Expectation and Variance 3. Lyapounov’s Inequality 4. Holder’s Inequality 5. Minkowski’s Inequality 6. Double Expectation Rule or Double-E Rule and many others
Mathematical Theory of Probability and Statistics
Author: Richard von Mises
Publisher: Academic Press
ISBN: 1483264025
Category : Mathematics
Languages : en
Pages : 709
Book Description
Mathematical Theory of Probability and Statistics focuses on the contributions and influence of Richard von Mises on the processes, methodologies, and approaches involved in the mathematical theory of probability and statistics. The publication first elaborates on fundamentals, general label space, and basic properties of distributions. Discussions focus on Gaussian distribution, Poisson distribution, mean value variance and other moments, non-countable label space, basic assumptions, operations, and distribution function. The text then ponders on examples of combined operations and summation of chance variables characteristic function. The book takes a look at the asymptotic distribution of the sum of chance variables and probability inference. Topics include inference from a finite number of observations, law of large numbers, asymptotic distributions, limit distribution of the sum of independent discrete random variables, probability of the sum of rare events, and probability density. The text also focuses on the introduction to the theory of statistical functions and multivariate statistics. The publication is a dependable source of information for researchers interested in the mathematical theory of probability and statistics
Publisher: Academic Press
ISBN: 1483264025
Category : Mathematics
Languages : en
Pages : 709
Book Description
Mathematical Theory of Probability and Statistics focuses on the contributions and influence of Richard von Mises on the processes, methodologies, and approaches involved in the mathematical theory of probability and statistics. The publication first elaborates on fundamentals, general label space, and basic properties of distributions. Discussions focus on Gaussian distribution, Poisson distribution, mean value variance and other moments, non-countable label space, basic assumptions, operations, and distribution function. The text then ponders on examples of combined operations and summation of chance variables characteristic function. The book takes a look at the asymptotic distribution of the sum of chance variables and probability inference. Topics include inference from a finite number of observations, law of large numbers, asymptotic distributions, limit distribution of the sum of independent discrete random variables, probability of the sum of rare events, and probability density. The text also focuses on the introduction to the theory of statistical functions and multivariate statistics. The publication is a dependable source of information for researchers interested in the mathematical theory of probability and statistics
Fundamentals of Applied Probability and Random Processes
Author: Oliver Ibe
Publisher: Academic Press
ISBN: 0128010355
Category : Mathematics
Languages : en
Pages : 457
Book Description
The long-awaited revision of Fundamentals of Applied Probability and Random Processes expands on the central components that made the first edition a classic. The title is based on the premise that engineers use probability as a modeling tool, and that probability can be applied to the solution of engineering problems. Engineers and students studying probability and random processes also need to analyze data, and thus need some knowledge of statistics. This book is designed to provide students with a thorough grounding in probability and stochastic processes, demonstrate their applicability to real-world problems, and introduce the basics of statistics. The book's clear writing style and homework problems make it ideal for the classroom or for self-study. - Demonstrates concepts with more than 100 illustrations, including 2 dozen new drawings - Expands readers' understanding of disruptive statistics in a new chapter (chapter 8) - Provides new chapter on Introduction to Random Processes with 14 new illustrations and tables explaining key concepts. - Includes two chapters devoted to the two branches of statistics, namely descriptive statistics (chapter 8) and inferential (or inductive) statistics (chapter 9).
Publisher: Academic Press
ISBN: 0128010355
Category : Mathematics
Languages : en
Pages : 457
Book Description
The long-awaited revision of Fundamentals of Applied Probability and Random Processes expands on the central components that made the first edition a classic. The title is based on the premise that engineers use probability as a modeling tool, and that probability can be applied to the solution of engineering problems. Engineers and students studying probability and random processes also need to analyze data, and thus need some knowledge of statistics. This book is designed to provide students with a thorough grounding in probability and stochastic processes, demonstrate their applicability to real-world problems, and introduce the basics of statistics. The book's clear writing style and homework problems make it ideal for the classroom or for self-study. - Demonstrates concepts with more than 100 illustrations, including 2 dozen new drawings - Expands readers' understanding of disruptive statistics in a new chapter (chapter 8) - Provides new chapter on Introduction to Random Processes with 14 new illustrations and tables explaining key concepts. - Includes two chapters devoted to the two branches of statistics, namely descriptive statistics (chapter 8) and inferential (or inductive) statistics (chapter 9).