Foundations of Hyperbolic Manifolds

Foundations of Hyperbolic Manifolds PDF Author: John Ratcliffe
Publisher: Springer Science & Business Media
ISBN: 0387331972
Category : Mathematics
Languages : en
Pages : 794

Get Book Here

Book Description
This heavily class-tested book is an exposition of the theoretical foundations of hyperbolic manifolds. It is a both a textbook and a reference. A basic knowledge of algebra and topology at the first year graduate level of an American university is assumed. The first part is concerned with hyperbolic geometry and discrete groups. The second part is devoted to the theory of hyperbolic manifolds. The third part integrates the first two parts in a development of the theory of hyperbolic orbifolds. Each chapter contains exercises and a section of historical remarks. A solutions manual is available separately.

Foundations of Hyperbolic Manifolds

Foundations of Hyperbolic Manifolds PDF Author: John Ratcliffe
Publisher: Springer Science & Business Media
ISBN: 0387331972
Category : Mathematics
Languages : en
Pages : 794

Get Book Here

Book Description
This heavily class-tested book is an exposition of the theoretical foundations of hyperbolic manifolds. It is a both a textbook and a reference. A basic knowledge of algebra and topology at the first year graduate level of an American university is assumed. The first part is concerned with hyperbolic geometry and discrete groups. The second part is devoted to the theory of hyperbolic manifolds. The third part integrates the first two parts in a development of the theory of hyperbolic orbifolds. Each chapter contains exercises and a section of historical remarks. A solutions manual is available separately.

Foundations of Hyperbolic Manifolds

Foundations of Hyperbolic Manifolds PDF Author: John G. Ratcliffe
Publisher: Springer Nature
ISBN: 3030315975
Category : Mathematics
Languages : en
Pages : 812

Get Book Here

Book Description
This heavily class-tested book is an exposition of the theoretical foundations of hyperbolic manifolds. It is a both a textbook and a reference. A basic knowledge of algebra and topology at the first year graduate level of an American university is assumed. The first part is concerned with hyperbolic geometry and discrete groups. The second part is devoted to the theory of hyperbolic manifolds. The third part integrates the first two parts in a development of the theory of hyperbolic orbifolds. Each chapter contains exercises and a section of historical remarks. A solutions manual is available separately.

Fundamentals of Hyperbolic Manifolds

Fundamentals of Hyperbolic Manifolds PDF Author: R. D. Canary
Publisher: Cambridge University Press
ISBN: 0521615585
Category : Mathematics
Languages : en
Pages : 348

Get Book Here

Book Description
Presents reissued articles from two classic sources on hyperbolic manifolds. Part I is an exposition of Chapters 8 and 9 of Thurston's pioneering Princeton Notes; there is a new introduction describing recent advances, with an up-to-date bibliography, giving a contemporary context in which the work can be set. Part II expounds the theory of convex hull boundaries and their bending laminations. A new appendix describes recent work. Part III is Thurston's famous paper that presents the notion of earthquakes in hyperbolic geometry and proves the earthquake theorem. The final part introduces the theory of measures on the limit set, drawing attention to related ergodic theory and the exponent of convergence. The book will be welcomed by graduate students and professional mathematicians who want a rigorous introduction to some basic tools essential for the modern theory of hyperbolic manifolds.

Fundamentals of Hyperbolic Manifolds

Fundamentals of Hyperbolic Manifolds PDF Author: R. D. Canary
Publisher: Cambridge University Press
ISBN: 9781139447195
Category : Mathematics
Languages : en
Pages : 356

Get Book Here

Book Description
Presents reissued articles from two classic sources on hyperbolic manifolds. Part I is an exposition of Chapters 8 and 9 of Thurston's pioneering Princeton Notes; there is a new introduction describing recent advances, with an up-to-date bibliography, giving a contemporary context in which the work can be set. Part II expounds the theory of convex hull boundaries and their bending laminations. A new appendix describes recent work. Part III is Thurston's famous paper that presents the notion of earthquakes in hyperbolic geometry and proves the earthquake theorem. The final part introduces the theory of measures on the limit set, drawing attention to related ergodic theory and the exponent of convergence. The book will be welcomed by graduate students and professional mathematicians who want a rigorous introduction to some basic tools essential for the modern theory of hyperbolic manifolds.

Fundamentals of Hyperbolic Geometry

Fundamentals of Hyperbolic Geometry PDF Author: Richard Douglas Canary
Publisher:
ISBN: 9781139126939
Category : Geometry, Hyperbolic
Languages : en
Pages : 348

Get Book Here

Book Description
Reissued articles from two classic sources on hyperbolic manifolds with new sections describing recent work.

Fundamentals of Differential Geometry

Fundamentals of Differential Geometry PDF Author: Serge Lang
Publisher: Springer Science & Business Media
ISBN: 1461205417
Category : Mathematics
Languages : en
Pages : 553

Get Book Here

Book Description
This book provides an introduction to the basic concepts in differential topology, differential geometry, and differential equations, and some of the main basic theorems in all three areas. This new edition includes new chapters, sections, examples, and exercises. From the reviews: "There are many books on the fundamentals of differential geometry, but this one is quite exceptional; this is not surprising for those who know Serge Lang's books." --EMS NEWSLETTER

Hyperbolic Manifolds

Hyperbolic Manifolds PDF Author: Albert Marden
Publisher: Cambridge University Press
ISBN: 1316432521
Category : Mathematics
Languages : en
Pages : 535

Get Book Here

Book Description
Over the past three decades there has been a total revolution in the classic branch of mathematics called 3-dimensional topology, namely the discovery that most solid 3-dimensional shapes are hyperbolic 3-manifolds. This book introduces and explains hyperbolic geometry and hyperbolic 3- and 2-dimensional manifolds in the first two chapters and then goes on to develop the subject. The author discusses the profound discoveries of the astonishing features of these 3-manifolds, helping the reader to understand them without going into long, detailed formal proofs. The book is heavily illustrated with pictures, mostly in color, that help explain the manifold properties described in the text. Each chapter ends with a set of exercises and explorations that both challenge the reader to prove assertions made in the text, and suggest further topics to explore that bring additional insight. There is an extensive index and bibliography.

Zariski Geometries

Zariski Geometries PDF Author: Boris Zilber
Publisher: Cambridge University Press
ISBN: 1139486519
Category : Mathematics
Languages : en
Pages : 225

Get Book Here

Book Description
This book presents methods and results from the theory of Zariski structures and discusses their applications in geometry as well as various other mathematical fields. Beginning with a crash course in model theory, this book will suit not only model theorists but also readers with a more classical geometric background.

Riemannian Manifolds

Riemannian Manifolds PDF Author: John M. Lee
Publisher: Springer Science & Business Media
ISBN: 0387227261
Category : Mathematics
Languages : en
Pages : 232

Get Book Here

Book Description
This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet’s Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.

How Groups Grow

How Groups Grow PDF Author: Avinoam Mann
Publisher: Cambridge University Press
ISBN: 113950567X
Category : Mathematics
Languages : en
Pages : 211

Get Book Here

Book Description
This book introduces the subject of the growth of groups from scratch, starting with basic definitions and culminating in the seminal results of Gromov and Grigorchuk and more. It is valuable reading for researchers from graduate students up who want to be acquainted with contemporary group theory.