Author: Keith Devlin
Publisher: Springer Science & Business Media
ISBN: 146120903X
Category : Mathematics
Languages : en
Pages : 204
Book Description
This text covers the parts of contemporary set theory relevant to other areas of pure mathematics. After a review of "naïve" set theory, it develops the Zermelo-Fraenkel axioms of the theory before discussing the ordinal and cardinal numbers. It then delves into contemporary set theory, covering such topics as the Borel hierarchy and Lebesgue measure. A final chapter presents an alternative conception of set theory useful in computer science.
The Joy of Sets
Author: Keith Devlin
Publisher: Springer Science & Business Media
ISBN: 146120903X
Category : Mathematics
Languages : en
Pages : 204
Book Description
This text covers the parts of contemporary set theory relevant to other areas of pure mathematics. After a review of "naïve" set theory, it develops the Zermelo-Fraenkel axioms of the theory before discussing the ordinal and cardinal numbers. It then delves into contemporary set theory, covering such topics as the Borel hierarchy and Lebesgue measure. A final chapter presents an alternative conception of set theory useful in computer science.
Publisher: Springer Science & Business Media
ISBN: 146120903X
Category : Mathematics
Languages : en
Pages : 204
Book Description
This text covers the parts of contemporary set theory relevant to other areas of pure mathematics. After a review of "naïve" set theory, it develops the Zermelo-Fraenkel axioms of the theory before discussing the ordinal and cardinal numbers. It then delves into contemporary set theory, covering such topics as the Borel hierarchy and Lebesgue measure. A final chapter presents an alternative conception of set theory useful in computer science.
Fundamentals of Contemporary Set Theory
Author: K. J. Devlin
Publisher: Springer Science & Business Media
ISBN: 1468400843
Category : Mathematics
Languages : en
Pages : 191
Book Description
This book is intended to provide an account of those parts of contemporary set theory which are of direct relevance to other areas of pure mathematics. The intended reader is either an advanced level undergraduate, or a beginning graduate student in mathematics, or else an accomplished mathematician who desires or needs a familiarity with modern set theory. The book is written in a fairly easy going style, with a minimum of formalism (a format characteristic of contemporary set theory) • In Chapter I the basic principles of set theory are developed in a "naive" tl manner. Here the notions of "set I II union " , "intersection", "power set" I "relation" I "function" etc. are defined and discussed. One assumption in writing this chapter has been that whereas the reader may have met all of these concepts before, and be familiar with their usage, he may not have considered the various notions as forming part of the continuous development of a pure subject (namely set theory) • Consequently, our development is at the same time rigorous and fast. Chapter II develops the theory of sets proper. Starting with the naive set theory of Chapter I, we begin by asking the question "What is a set?" Attempts to give a rLgorous answer lead naturally to the axioms of set theory introduced by Zermelo and Fraenkel, which is the system taken as basic in this book.
Publisher: Springer Science & Business Media
ISBN: 1468400843
Category : Mathematics
Languages : en
Pages : 191
Book Description
This book is intended to provide an account of those parts of contemporary set theory which are of direct relevance to other areas of pure mathematics. The intended reader is either an advanced level undergraduate, or a beginning graduate student in mathematics, or else an accomplished mathematician who desires or needs a familiarity with modern set theory. The book is written in a fairly easy going style, with a minimum of formalism (a format characteristic of contemporary set theory) • In Chapter I the basic principles of set theory are developed in a "naive" tl manner. Here the notions of "set I II union " , "intersection", "power set" I "relation" I "function" etc. are defined and discussed. One assumption in writing this chapter has been that whereas the reader may have met all of these concepts before, and be familiar with their usage, he may not have considered the various notions as forming part of the continuous development of a pure subject (namely set theory) • Consequently, our development is at the same time rigorous and fast. Chapter II develops the theory of sets proper. Starting with the naive set theory of Chapter I, we begin by asking the question "What is a set?" Attempts to give a rLgorous answer lead naturally to the axioms of set theory introduced by Zermelo and Fraenkel, which is the system taken as basic in this book.
The Joy of Sets
Author: Keith Devlin
Publisher: Springer Science & Business Media
ISBN: 0387940944
Category : Mathematics
Languages : en
Pages : 212
Book Description
This text covers the parts of contemporary set theory relevant to other areas of pure mathematics. After a review of "naïve" set theory, it develops the Zermelo-Fraenkel axioms of the theory before discussing the ordinal and cardinal numbers. It then delves into contemporary set theory, covering such topics as the Borel hierarchy and Lebesgue measure. A final chapter presents an alternative conception of set theory useful in computer science.
Publisher: Springer Science & Business Media
ISBN: 0387940944
Category : Mathematics
Languages : en
Pages : 212
Book Description
This text covers the parts of contemporary set theory relevant to other areas of pure mathematics. After a review of "naïve" set theory, it develops the Zermelo-Fraenkel axioms of the theory before discussing the ordinal and cardinal numbers. It then delves into contemporary set theory, covering such topics as the Borel hierarchy and Lebesgue measure. A final chapter presents an alternative conception of set theory useful in computer science.
Introduction to the Theory of Sets
Author: Joseph Breuer
Publisher: Courier Corporation
ISBN: 0486154874
Category : Mathematics
Languages : en
Pages : 130
Book Description
This undergraduate text develops its subject through observations of the physical world, covering finite sets, cardinal numbers, infinite cardinals, and ordinals. Includes exercises with answers. 1958 edition.
Publisher: Courier Corporation
ISBN: 0486154874
Category : Mathematics
Languages : en
Pages : 130
Book Description
This undergraduate text develops its subject through observations of the physical world, covering finite sets, cardinal numbers, infinite cardinals, and ordinals. Includes exercises with answers. 1958 edition.
A Book of Set Theory
Author: Charles C Pinter
Publisher: Courier Corporation
ISBN: 0486497089
Category : Mathematics
Languages : en
Pages : 259
Book Description
"This accessible approach to set theory for upper-level undergraduates poses rigorous but simple arguments. Each definition is accompanied by commentary that motivates and explains new concepts. A historical introduction is followed by discussions of classes and sets, functions, natural and cardinal numbers, the arithmetic of ordinal numbers, and related topics. 1971 edition with new material by the author"--
Publisher: Courier Corporation
ISBN: 0486497089
Category : Mathematics
Languages : en
Pages : 259
Book Description
"This accessible approach to set theory for upper-level undergraduates poses rigorous but simple arguments. Each definition is accompanied by commentary that motivates and explains new concepts. A historical introduction is followed by discussions of classes and sets, functions, natural and cardinal numbers, the arithmetic of ordinal numbers, and related topics. 1971 edition with new material by the author"--
Philosophical Introduction to Set Theory
Author: Stephen Pollard
Publisher: Courier Dover Publications
ISBN: 0486797147
Category : Mathematics
Languages : en
Pages : 196
Book Description
This unique approach maintains that set theory is the primary mechanism for ideological and theoretical unification in modern mathematics, and its technically informed discussion covers a variety of philosophical issues. 1990 edition.
Publisher: Courier Dover Publications
ISBN: 0486797147
Category : Mathematics
Languages : en
Pages : 196
Book Description
This unique approach maintains that set theory is the primary mechanism for ideological and theoretical unification in modern mathematics, and its technically informed discussion covers a variety of philosophical issues. 1990 edition.
Abstract Set Theory
Author: Abraham Adolf Fraenkel
Publisher:
ISBN:
Category :
Languages : en
Pages : 297
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 297
Book Description
Quine, New Foundations, and the Philosophy of Set Theory
Author: Sean Morris
Publisher: Cambridge University Press
ISBN: 110715250X
Category : History
Languages : en
Pages : 221
Book Description
Provides an accessible mathematical and philosophical account of Quine's set theory, New Foundations.
Publisher: Cambridge University Press
ISBN: 110715250X
Category : History
Languages : en
Pages : 221
Book Description
Provides an accessible mathematical and philosophical account of Quine's set theory, New Foundations.
Elements of Set Theory
Author: Herbert B. Enderton
Publisher: Academic Press
ISBN: 0080570429
Category : Mathematics
Languages : en
Pages : 294
Book Description
This is an introductory undergraduate textbook in set theory. In mathematics these days, essentially everything is a set. Some knowledge of set theory is necessary part of the background everyone needs for further study of mathematics. It is also possible to study set theory for its own interest--it is a subject with intruiging results anout simple objects. This book starts with material that nobody can do without. There is no end to what can be learned of set theory, but here is a beginning.
Publisher: Academic Press
ISBN: 0080570429
Category : Mathematics
Languages : en
Pages : 294
Book Description
This is an introductory undergraduate textbook in set theory. In mathematics these days, essentially everything is a set. Some knowledge of set theory is necessary part of the background everyone needs for further study of mathematics. It is also possible to study set theory for its own interest--it is a subject with intruiging results anout simple objects. This book starts with material that nobody can do without. There is no end to what can be learned of set theory, but here is a beginning.
Fundamentals of Set and Number Theory
Author: Valeriy K. Zakharov
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110550946
Category : Mathematics
Languages : en
Pages : 448
Book Description
This comprehensive two-volume work is devoted to the most general beginnings of mathematics. It goes back to Hausdorff’s classic Set Theory (2nd ed., 1927), where set theory and the theory of functions were expounded as the fundamental parts of mathematics in such a way that there was no need for references to other sources. Along the lines of Hausdorff’s initial work (1st ed., 1914), measure and integration theory is also included here as the third fundamental part of contemporary mathematics.The material about sets and numbers is placed in Volume 1 and the material about functions and measures is placed in Volume 2. Contents Fundamentals of the theory of classes, sets, and numbers Characterization of all natural models of Neumann – Bernays – Godel and Zermelo – Fraenkel set theories Local theory of sets as a foundation for category theory and its connection with the Zermelo – Fraenkel set theory Compactness theorem for generalized second-order language
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110550946
Category : Mathematics
Languages : en
Pages : 448
Book Description
This comprehensive two-volume work is devoted to the most general beginnings of mathematics. It goes back to Hausdorff’s classic Set Theory (2nd ed., 1927), where set theory and the theory of functions were expounded as the fundamental parts of mathematics in such a way that there was no need for references to other sources. Along the lines of Hausdorff’s initial work (1st ed., 1914), measure and integration theory is also included here as the third fundamental part of contemporary mathematics.The material about sets and numbers is placed in Volume 1 and the material about functions and measures is placed in Volume 2. Contents Fundamentals of the theory of classes, sets, and numbers Characterization of all natural models of Neumann – Bernays – Godel and Zermelo – Fraenkel set theories Local theory of sets as a foundation for category theory and its connection with the Zermelo – Fraenkel set theory Compactness theorem for generalized second-order language