Author: Norbert Ortner
Publisher: Springer
ISBN: 3319201409
Category : Mathematics
Languages : en
Pages : 407
Book Description
This monograph provides the theoretical foundations needed for the construction of fundamental solutions and fundamental matrices of (systems of) linear partial differential equations. Many illustrative examples also show techniques for finding such solutions in terms of integrals. Particular attention is given to developing the fundamentals of distribution theory, accompanied by calculations of fundamental solutions. The main part of the book deals with existence theorems and uniqueness criteria, the method of parameter integration, the investigation of quasihyperbolic systems by means of Fourier and Laplace transforms, and the representation of fundamental solutions of homogeneous elliptic operators with the help of Abelian integrals. In addition to rigorous distributional derivations and verifications of fundamental solutions, the book also shows how to construct fundamental solutions (matrices) of many physically relevant operators (systems), in elasticity, thermoelasticity, hexagonal/cubic elastodynamics, for Maxwell’s system and others. The book mainly addresses researchers and lecturers who work with partial differential equations. However, it also offers a valuable resource for students with a solid background in vector calculus, complex analysis and functional analysis.
Fundamental Solutions of Linear Partial Differential Operators
Author: Norbert Ortner
Publisher: Springer
ISBN: 3319201409
Category : Mathematics
Languages : en
Pages : 407
Book Description
This monograph provides the theoretical foundations needed for the construction of fundamental solutions and fundamental matrices of (systems of) linear partial differential equations. Many illustrative examples also show techniques for finding such solutions in terms of integrals. Particular attention is given to developing the fundamentals of distribution theory, accompanied by calculations of fundamental solutions. The main part of the book deals with existence theorems and uniqueness criteria, the method of parameter integration, the investigation of quasihyperbolic systems by means of Fourier and Laplace transforms, and the representation of fundamental solutions of homogeneous elliptic operators with the help of Abelian integrals. In addition to rigorous distributional derivations and verifications of fundamental solutions, the book also shows how to construct fundamental solutions (matrices) of many physically relevant operators (systems), in elasticity, thermoelasticity, hexagonal/cubic elastodynamics, for Maxwell’s system and others. The book mainly addresses researchers and lecturers who work with partial differential equations. However, it also offers a valuable resource for students with a solid background in vector calculus, complex analysis and functional analysis.
Publisher: Springer
ISBN: 3319201409
Category : Mathematics
Languages : en
Pages : 407
Book Description
This monograph provides the theoretical foundations needed for the construction of fundamental solutions and fundamental matrices of (systems of) linear partial differential equations. Many illustrative examples also show techniques for finding such solutions in terms of integrals. Particular attention is given to developing the fundamentals of distribution theory, accompanied by calculations of fundamental solutions. The main part of the book deals with existence theorems and uniqueness criteria, the method of parameter integration, the investigation of quasihyperbolic systems by means of Fourier and Laplace transforms, and the representation of fundamental solutions of homogeneous elliptic operators with the help of Abelian integrals. In addition to rigorous distributional derivations and verifications of fundamental solutions, the book also shows how to construct fundamental solutions (matrices) of many physically relevant operators (systems), in elasticity, thermoelasticity, hexagonal/cubic elastodynamics, for Maxwell’s system and others. The book mainly addresses researchers and lecturers who work with partial differential equations. However, it also offers a valuable resource for students with a solid background in vector calculus, complex analysis and functional analysis.
Fundamental Solutions for Differential Operators and Applications
Author: Prem Kythe
Publisher: Springer Science & Business Media
ISBN: 9780817638696
Category : Mathematics
Languages : en
Pages : 448
Book Description
A self-contained and systematic development of an aspect of analysis which deals with the theory of fundamental solutions for differential operators, and their applications to boundary value problems of mathematical physics, applied mathematics, and engineering, with the related computational aspects.
Publisher: Springer Science & Business Media
ISBN: 9780817638696
Category : Mathematics
Languages : en
Pages : 448
Book Description
A self-contained and systematic development of an aspect of analysis which deals with the theory of fundamental solutions for differential operators, and their applications to boundary value problems of mathematical physics, applied mathematics, and engineering, with the related computational aspects.
Partial Differential Equations
Author: Walter A. Strauss
Publisher: John Wiley & Sons
ISBN: 0470054565
Category : Mathematics
Languages : en
Pages : 467
Book Description
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Publisher: John Wiley & Sons
ISBN: 0470054565
Category : Mathematics
Languages : en
Pages : 467
Book Description
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Introduction To Partial Differential Equations (With Maple), An: A Concise Course
Author: Zhilin Li
Publisher: World Scientific
ISBN: 9811228647
Category : Mathematics
Languages : en
Pages : 218
Book Description
The book is designed for undergraduate or beginning level graduate students, and students from interdisciplinary areas including engineers, and others who need to use partial differential equations, Fourier series, Fourier and Laplace transforms. The prerequisite is a basic knowledge of calculus, linear algebra, and ordinary differential equations.The textbook aims to be practical, elementary, and reasonably rigorous; the book is concise in that it describes fundamental solution techniques for first order, second order, linear partial differential equations for general solutions, fundamental solutions, solution to Cauchy (initial value) problems, and boundary value problems for different PDEs in one and two dimensions, and different coordinates systems. Analytic solutions to boundary value problems are based on Sturm-Liouville eigenvalue problems and series solutions.The book is accompanied with enough well tested Maple files and some Matlab codes that are available online. The use of Maple makes the complicated series solution simple, interactive, and visible. These features distinguish the book from other textbooks available in the related area.
Publisher: World Scientific
ISBN: 9811228647
Category : Mathematics
Languages : en
Pages : 218
Book Description
The book is designed for undergraduate or beginning level graduate students, and students from interdisciplinary areas including engineers, and others who need to use partial differential equations, Fourier series, Fourier and Laplace transforms. The prerequisite is a basic knowledge of calculus, linear algebra, and ordinary differential equations.The textbook aims to be practical, elementary, and reasonably rigorous; the book is concise in that it describes fundamental solution techniques for first order, second order, linear partial differential equations for general solutions, fundamental solutions, solution to Cauchy (initial value) problems, and boundary value problems for different PDEs in one and two dimensions, and different coordinates systems. Analytic solutions to boundary value problems are based on Sturm-Liouville eigenvalue problems and series solutions.The book is accompanied with enough well tested Maple files and some Matlab codes that are available online. The use of Maple makes the complicated series solution simple, interactive, and visible. These features distinguish the book from other textbooks available in the related area.
Partial Differential Equations III
Author: M. A. Shubin
Publisher: Springer Verlag
ISBN: 9783540520030
Category : Mathematics
Languages : en
Pages : 216
Book Description
Two general questions regarding partial differential equations are explored in detail in this volume of the Encyclopaedia. The first is the Cauchy problem, and its attendant question of well-posedness (or correctness). The authors address this question in the context of PDEs with constant coefficients and more general convolution equations in the first two chapters. The third chapter extends a number of these results to equations with variable coefficients. The second topic is the qualitative theory of second order linear PDEs, in particular, elliptic and parabolic equations. Thus, the second part of the book is primarily a look at the behavior of solutions of these equations. There are versions of the maximum principle, the Phragmen-Lindel]f theorem and Harnack's inequality discussed for both elliptic and parabolic equations. The book is intended for readers who are already familiar with the basic material in the theory of partial differential equations.
Publisher: Springer Verlag
ISBN: 9783540520030
Category : Mathematics
Languages : en
Pages : 216
Book Description
Two general questions regarding partial differential equations are explored in detail in this volume of the Encyclopaedia. The first is the Cauchy problem, and its attendant question of well-posedness (or correctness). The authors address this question in the context of PDEs with constant coefficients and more general convolution equations in the first two chapters. The third chapter extends a number of these results to equations with variable coefficients. The second topic is the qualitative theory of second order linear PDEs, in particular, elliptic and parabolic equations. Thus, the second part of the book is primarily a look at the behavior of solutions of these equations. There are versions of the maximum principle, the Phragmen-Lindel]f theorem and Harnack's inequality discussed for both elliptic and parabolic equations. The book is intended for readers who are already familiar with the basic material in the theory of partial differential equations.
Linear Differential Operators
Author: Cornelius Lanczos
Publisher: SIAM
ISBN: 9781611971187
Category : Mathematics
Languages : en
Pages : 581
Book Description
Originally published in 1961, this Classics edition continues to be appealing because it describes a large number of techniques still useful today. Although the primary focus is on the analytical theory, concrete cases are cited to forge the link between theory and practice. Considerable manipulative skill in the practice of differential equations is to be developed by solving the 350 problems in the text. The problems are intended as stimulating corollaries linking theory with application and providing the reader with the foundation for tackling more difficult problems. Lanczos begins with three introductory chapters that explore some of the technical tools needed later in the book, and then goes on to discuss interpolation, harmonic analysis, matrix calculus, the concept of the function space, boundary value problems, and the numerical solution of trajectory problems, among other things. The emphasis is constantly on one question: "What are the basic and characteristic properties of linear differential operators?" In the author's words, this book is written for those "to whom a problem in ordinary or partial differential equations is not a problem of logical acrobatism, but a problem in the exploration of the physical universe. To get an explicit solution of a given boundary value problem is in this age of large electronic computers no longer a basic question. But of what value is the numerical answer if the scientist does not understand the peculiar analytical properties and idiosyncrasies of the given operator? The author hopes that this book will help in this task by telling something about the manifold aspects of a fascinating field."
Publisher: SIAM
ISBN: 9781611971187
Category : Mathematics
Languages : en
Pages : 581
Book Description
Originally published in 1961, this Classics edition continues to be appealing because it describes a large number of techniques still useful today. Although the primary focus is on the analytical theory, concrete cases are cited to forge the link between theory and practice. Considerable manipulative skill in the practice of differential equations is to be developed by solving the 350 problems in the text. The problems are intended as stimulating corollaries linking theory with application and providing the reader with the foundation for tackling more difficult problems. Lanczos begins with three introductory chapters that explore some of the technical tools needed later in the book, and then goes on to discuss interpolation, harmonic analysis, matrix calculus, the concept of the function space, boundary value problems, and the numerical solution of trajectory problems, among other things. The emphasis is constantly on one question: "What are the basic and characteristic properties of linear differential operators?" In the author's words, this book is written for those "to whom a problem in ordinary or partial differential equations is not a problem of logical acrobatism, but a problem in the exploration of the physical universe. To get an explicit solution of a given boundary value problem is in this age of large electronic computers no longer a basic question. But of what value is the numerical answer if the scientist does not understand the peculiar analytical properties and idiosyncrasies of the given operator? The author hopes that this book will help in this task by telling something about the manifold aspects of a fascinating field."
Linear Partial Differential Equations for Scientists and Engineers
Author: Tyn Myint-U
Publisher: Springer Science & Business Media
ISBN: 0817645608
Category : Mathematics
Languages : en
Pages : 790
Book Description
This significantly expanded fourth edition is designed as an introduction to the theory and applications of linear PDEs. The authors provide fundamental concepts, underlying principles, a wide range of applications, and various methods of solutions to PDEs. In addition to essential standard material on the subject, the book contains new material that is not usually covered in similar texts and reference books. It also contains a large number of worked examples and exercises dealing with problems in fluid mechanics, gas dynamics, optics, plasma physics, elasticity, biology, and chemistry; solutions are provided.
Publisher: Springer Science & Business Media
ISBN: 0817645608
Category : Mathematics
Languages : en
Pages : 790
Book Description
This significantly expanded fourth edition is designed as an introduction to the theory and applications of linear PDEs. The authors provide fundamental concepts, underlying principles, a wide range of applications, and various methods of solutions to PDEs. In addition to essential standard material on the subject, the book contains new material that is not usually covered in similar texts and reference books. It also contains a large number of worked examples and exercises dealing with problems in fluid mechanics, gas dynamics, optics, plasma physics, elasticity, biology, and chemistry; solutions are provided.
The Analysis of Linear Partial Differential Operators II
Author: Lars Hörmander
Publisher: Springer Science & Business Media
ISBN: 9783540225164
Category : Mathematics
Languages : en
Pages : 416
Book Description
Author received the 1962 Fields Medal Author received the 1988 Wolf Prize (honoring achievemnets of a lifetime) Author is leading expert in partial differential equations
Publisher: Springer Science & Business Media
ISBN: 9783540225164
Category : Mathematics
Languages : en
Pages : 416
Book Description
Author received the 1962 Fields Medal Author received the 1988 Wolf Prize (honoring achievemnets of a lifetime) Author is leading expert in partial differential equations
Handbook of Linear Partial Differential Equations for Engineers and Scientists
Author: Andrei D. Polyanin
Publisher: CRC Press
ISBN: 1420035320
Category : Mathematics
Languages : en
Pages : 800
Book Description
Following in the footsteps of the authors' bestselling Handbook of Integral Equations and Handbook of Exact Solutions for Ordinary Differential Equations, this handbook presents brief formulations and exact solutions for more than 2,200 equations and problems in science and engineering. Parabolic, hyperbolic, and elliptic equations with
Publisher: CRC Press
ISBN: 1420035320
Category : Mathematics
Languages : en
Pages : 800
Book Description
Following in the footsteps of the authors' bestselling Handbook of Integral Equations and Handbook of Exact Solutions for Ordinary Differential Equations, this handbook presents brief formulations and exact solutions for more than 2,200 equations and problems in science and engineering. Parabolic, hyperbolic, and elliptic equations with
A Primer of Algebraic D-Modules
Author: S. C. Coutinho
Publisher: Cambridge University Press
ISBN: 0521551196
Category : Mathematics
Languages : en
Pages : 223
Book Description
The theory of D-modules is a rich area of study combining ideas from algebra and differential equations, and it has significant applications to diverse areas such as singularity theory and representation theory. This book introduces D-modules and their applications avoiding all unnecessary over-sophistication. It is aimed at beginning graduate students and the approach taken is algebraic, concentrating on the role of the Weyl algebra. Very few prerequisites are assumed, and the book is virtually self-contained. Exercises are included at the end of each chapter and the reader is given ample references to the more advanced literature. This is an excellent introduction to D-modules for all who are new to this area.
Publisher: Cambridge University Press
ISBN: 0521551196
Category : Mathematics
Languages : en
Pages : 223
Book Description
The theory of D-modules is a rich area of study combining ideas from algebra and differential equations, and it has significant applications to diverse areas such as singularity theory and representation theory. This book introduces D-modules and their applications avoiding all unnecessary over-sophistication. It is aimed at beginning graduate students and the approach taken is algebraic, concentrating on the role of the Weyl algebra. Very few prerequisites are assumed, and the book is virtually self-contained. Exercises are included at the end of each chapter and the reader is given ample references to the more advanced literature. This is an excellent introduction to D-modules for all who are new to this area.