Author: Dirk Olbers
Publisher: Springer Science & Business Media
ISBN: 364223450X
Category : Science
Languages : en
Pages : 717
Book Description
Ocean Dynamics’ is a concise introduction to the fundamentals of fluid mechanics, non-equilibrium thermodynamics and the common approximations for geophysical fluid dynamics, presenting a comprehensive approach to large-scale ocean circulation theory. The book is written on the physical and mathematical level of graduate students in theoretical courses of physical oceanography, meteorology and environmental physics. An extensive bibliography and index, extensive side notes and recommendations for further reading, and a comparison with the specific atmospheric physics where applicable, makes this volume also a useful reading for researchers. Each of the four parts of the book – fundamental laws, common approximations, ocean waves, oceanic turbulence and eddies, and selected aspects of ocean dynamics – starts with elementary considerations, blending then classical topics with more advanced developments of fluid mechanics and theoretical oceanography. The last part covers the theory of the global wind-driven circulation in homogeneous and stratified regimes, the circulation and overturning in the Southern Ocean, and the global meridional overturning and thermohaline-driven circulation. Emphasis is placed on simple physical models rather than access to extensive numerical results, enabling students to understand and reproduce the complex theory mostly by analytical means. All equations and models are derived in detail and illustrated by numerous figures. The appendix provides short excursions into the mathematical background, such as vector analysis, statistics, and differential equations
Ocean Dynamics
Author: Dirk Olbers
Publisher: Springer Science & Business Media
ISBN: 364223450X
Category : Science
Languages : en
Pages : 717
Book Description
Ocean Dynamics’ is a concise introduction to the fundamentals of fluid mechanics, non-equilibrium thermodynamics and the common approximations for geophysical fluid dynamics, presenting a comprehensive approach to large-scale ocean circulation theory. The book is written on the physical and mathematical level of graduate students in theoretical courses of physical oceanography, meteorology and environmental physics. An extensive bibliography and index, extensive side notes and recommendations for further reading, and a comparison with the specific atmospheric physics where applicable, makes this volume also a useful reading for researchers. Each of the four parts of the book – fundamental laws, common approximations, ocean waves, oceanic turbulence and eddies, and selected aspects of ocean dynamics – starts with elementary considerations, blending then classical topics with more advanced developments of fluid mechanics and theoretical oceanography. The last part covers the theory of the global wind-driven circulation in homogeneous and stratified regimes, the circulation and overturning in the Southern Ocean, and the global meridional overturning and thermohaline-driven circulation. Emphasis is placed on simple physical models rather than access to extensive numerical results, enabling students to understand and reproduce the complex theory mostly by analytical means. All equations and models are derived in detail and illustrated by numerous figures. The appendix provides short excursions into the mathematical background, such as vector analysis, statistics, and differential equations
Publisher: Springer Science & Business Media
ISBN: 364223450X
Category : Science
Languages : en
Pages : 717
Book Description
Ocean Dynamics’ is a concise introduction to the fundamentals of fluid mechanics, non-equilibrium thermodynamics and the common approximations for geophysical fluid dynamics, presenting a comprehensive approach to large-scale ocean circulation theory. The book is written on the physical and mathematical level of graduate students in theoretical courses of physical oceanography, meteorology and environmental physics. An extensive bibliography and index, extensive side notes and recommendations for further reading, and a comparison with the specific atmospheric physics where applicable, makes this volume also a useful reading for researchers. Each of the four parts of the book – fundamental laws, common approximations, ocean waves, oceanic turbulence and eddies, and selected aspects of ocean dynamics – starts with elementary considerations, blending then classical topics with more advanced developments of fluid mechanics and theoretical oceanography. The last part covers the theory of the global wind-driven circulation in homogeneous and stratified regimes, the circulation and overturning in the Southern Ocean, and the global meridional overturning and thermohaline-driven circulation. Emphasis is placed on simple physical models rather than access to extensive numerical results, enabling students to understand and reproduce the complex theory mostly by analytical means. All equations and models are derived in detail and illustrated by numerous figures. The appendix provides short excursions into the mathematical background, such as vector analysis, statistics, and differential equations
Fundamental of Ocean Dynamics
Author:
Publisher: Elsevier
ISBN: 008087052X
Category : Science
Languages : en
Pages : 261
Book Description
Fundamental of Ocean Dynamics
Publisher: Elsevier
ISBN: 008087052X
Category : Science
Languages : en
Pages : 261
Book Description
Fundamental of Ocean Dynamics
Atmospheric and Oceanic Fluid Dynamics
Author: Geoffrey K. Vallis
Publisher: Cambridge University Press
ISBN: 1139459961
Category : Science
Languages : en
Pages : 772
Book Description
Fluid dynamics is fundamental to our understanding of the atmosphere and oceans. Although many of the same principles of fluid dynamics apply to both the atmosphere and oceans, textbooks tend to concentrate on the atmosphere, the ocean, or the theory of geophysical fluid dynamics (GFD). This textbook provides a comprehensive unified treatment of atmospheric and oceanic fluid dynamics. The book introduces the fundamentals of geophysical fluid dynamics, including rotation and stratification, vorticity and potential vorticity, and scaling and approximations. It discusses baroclinic and barotropic instabilities, wave-mean flow interactions and turbulence, and the general circulation of the atmosphere and ocean. Student problems and exercises are included at the end of each chapter. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation will be an invaluable graduate textbook on advanced courses in GFD, meteorology, atmospheric science and oceanography, and an excellent review volume for researchers. Additional resources are available at www.cambridge.org/9780521849692.
Publisher: Cambridge University Press
ISBN: 1139459961
Category : Science
Languages : en
Pages : 772
Book Description
Fluid dynamics is fundamental to our understanding of the atmosphere and oceans. Although many of the same principles of fluid dynamics apply to both the atmosphere and oceans, textbooks tend to concentrate on the atmosphere, the ocean, or the theory of geophysical fluid dynamics (GFD). This textbook provides a comprehensive unified treatment of atmospheric and oceanic fluid dynamics. The book introduces the fundamentals of geophysical fluid dynamics, including rotation and stratification, vorticity and potential vorticity, and scaling and approximations. It discusses baroclinic and barotropic instabilities, wave-mean flow interactions and turbulence, and the general circulation of the atmosphere and ocean. Student problems and exercises are included at the end of each chapter. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation will be an invaluable graduate textbook on advanced courses in GFD, meteorology, atmospheric science and oceanography, and an excellent review volume for researchers. Additional resources are available at www.cambridge.org/9780521849692.
Ocean Dynamics and the Carbon Cycle
Author: Richard G. Williams
Publisher: Cambridge University Press
ISBN: 1139496778
Category : Science
Languages : en
Pages : 433
Book Description
This textbook for advanced undergraduate and graduate students presents a multidisciplinary approach to understanding ocean circulation and how it drives and controls marine biogeochemistry and biological productivity at a global scale. Background chapters on ocean physics, chemistry and biology provide students with the tools to examine the range of large-scale physical and dynamic phenomena that control the ocean carbon cycle and its interaction with the atmosphere. Throughout the text observational data is integrated with basic physical theory to address cutting-edge research questions in ocean biogeochemistry. Simple theoretical models, data plots and schematic illustrations summarise key results and connect the physical theory to real observations. Advanced mathematics is provided in boxes and appendices where it can be drawn on to assist with the worked examples and homework exercises available online. Further reading lists for each chapter and a comprehensive glossary provide students and instructors with a complete learning package.
Publisher: Cambridge University Press
ISBN: 1139496778
Category : Science
Languages : en
Pages : 433
Book Description
This textbook for advanced undergraduate and graduate students presents a multidisciplinary approach to understanding ocean circulation and how it drives and controls marine biogeochemistry and biological productivity at a global scale. Background chapters on ocean physics, chemistry and biology provide students with the tools to examine the range of large-scale physical and dynamic phenomena that control the ocean carbon cycle and its interaction with the atmosphere. Throughout the text observational data is integrated with basic physical theory to address cutting-edge research questions in ocean biogeochemistry. Simple theoretical models, data plots and schematic illustrations summarise key results and connect the physical theory to real observations. Advanced mathematics is provided in boxes and appendices where it can be drawn on to assist with the worked examples and homework exercises available online. Further reading lists for each chapter and a comprehensive glossary provide students and instructors with a complete learning package.
Atmosphere—Ocean Dynamics
Author: Adrian E. Gill
Publisher: Elsevier
ISBN: 1483281582
Category : Science
Languages : en
Pages : 683
Book Description
Atmosphere-Ocean Dynamics deals with a systematic and unified approach to the dynamics of the ocean and atmosphere. The book reviews the relationship of the ocean-atmosphere and how this system functions. The text explains this system through radiative equilibrium models; the book also considers the greenhouse effect, the effects of convection and of horizontal gradients, and the variability in radiative driving of the earth. Equations in the book show the properties of a material element, mass conservation, the balance of scalar quantity (such as salinity), and the mathematical behavior of the ocean and atmosphere. The book also addresses how the ocean-atmosphere system tends to adjust to equilibrium, both in the absence and presence of driving forces such as gravity. The text also explains the effect of the earth's rotation on the system, as well as the application of forced motions such as that produced by wind or temperature changes. The book explains tropical dynamics and the effects of variation of the Coriolis parameter with latitude. The text will be appreciated by meteorologists, environmentalists, students studying hydrology, and people working in general earth sciences.
Publisher: Elsevier
ISBN: 1483281582
Category : Science
Languages : en
Pages : 683
Book Description
Atmosphere-Ocean Dynamics deals with a systematic and unified approach to the dynamics of the ocean and atmosphere. The book reviews the relationship of the ocean-atmosphere and how this system functions. The text explains this system through radiative equilibrium models; the book also considers the greenhouse effect, the effects of convection and of horizontal gradients, and the variability in radiative driving of the earth. Equations in the book show the properties of a material element, mass conservation, the balance of scalar quantity (such as salinity), and the mathematical behavior of the ocean and atmosphere. The book also addresses how the ocean-atmosphere system tends to adjust to equilibrium, both in the absence and presence of driving forces such as gravity. The text also explains the effect of the earth's rotation on the system, as well as the application of forced motions such as that produced by wind or temperature changes. The book explains tropical dynamics and the effects of variation of the Coriolis parameter with latitude. The text will be appreciated by meteorologists, environmentalists, students studying hydrology, and people working in general earth sciences.
Fundamentals of Geophysical Fluid Dynamics
Author: James C. McWilliams
Publisher: Cambridge University Press
ISBN: 052185637X
Category : Science
Languages : en
Pages : 273
Book Description
Intermediate/advanced textbook which provides concise and accessible introduction to GFD for broad range of students.
Publisher: Cambridge University Press
ISBN: 052185637X
Category : Science
Languages : en
Pages : 273
Book Description
Intermediate/advanced textbook which provides concise and accessible introduction to GFD for broad range of students.
Essentials of Atmospheric and Oceanic Dynamics
Author: Geoffrey K. Vallis
Publisher: Cambridge University Press
ISBN: 1108586856
Category : Science
Languages : en
Pages : 368
Book Description
This is a modern, introductory textbook on the dynamics of the atmosphere and ocean, with a healthy dose of geophysical fluid dynamics. It will be invaluable for intermediate to advanced undergraduate and graduate students in meteorology, oceanography, mathematics, and physics. It is unique in taking the reader from very basic concepts to the forefront of research. It also forms an excellent refresher for researchers in atmospheric science and oceanography. It differs from other books at this level in both style and content: as well as very basic material it includes some elementary introductions to more advanced topics. The advanced sections can easily be omitted for a more introductory course, as they are clearly marked in the text. Readers who wish to explore these topics in more detail can refer to this book's parent, Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation, now in its second edition.
Publisher: Cambridge University Press
ISBN: 1108586856
Category : Science
Languages : en
Pages : 368
Book Description
This is a modern, introductory textbook on the dynamics of the atmosphere and ocean, with a healthy dose of geophysical fluid dynamics. It will be invaluable for intermediate to advanced undergraduate and graduate students in meteorology, oceanography, mathematics, and physics. It is unique in taking the reader from very basic concepts to the forefront of research. It also forms an excellent refresher for researchers in atmospheric science and oceanography. It differs from other books at this level in both style and content: as well as very basic material it includes some elementary introductions to more advanced topics. The advanced sections can easily be omitted for a more introductory course, as they are clearly marked in the text. Readers who wish to explore these topics in more detail can refer to this book's parent, Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation, now in its second edition.
Atmospheres and Oceans on Computers
Author: Lars Petter Røed
Publisher: Springer
ISBN: 3319938649
Category : Science
Languages : en
Pages : 293
Book Description
This textbook introduces step by step the basic numerical methods to solve the equations governing the motion of the atmosphere and ocean, and describes how to develop a set of corresponding instructions for the computer as part of a code. Today's computers are powerful enough to allow 7-day forecasts within hours, and modern teaching of the subject requires a combination of theoretical and computational approaches. The presentation is aimed at beginning graduate students intending to become forecasters or researchers, that is, users of existing models or model developers. However, model developers must be well versed in the underlying physics as well as in numerical methods. Thus, while some of the topics discussed in the modeling of the atmosphere and ocean are more advanced, the book ensures that the gap between those scientists who analyze results from model simulations and observations and those who work with the inner works of the model does not widen further. In this spirit, the course presents methods whereby important balance equations in oceanography and meteorology, namely the advection-diffusion equation and the shallow water equations on a rotating Earth, can be solved by numerical means with little prior knowledge. The numerical focus is on the finite-difference (FD) methods, and although more powerful methods exist, the simplicity of FD makes it ideal as a pedagogical introduction to the subject. The book also includes suitable exercises and computer problems.
Publisher: Springer
ISBN: 3319938649
Category : Science
Languages : en
Pages : 293
Book Description
This textbook introduces step by step the basic numerical methods to solve the equations governing the motion of the atmosphere and ocean, and describes how to develop a set of corresponding instructions for the computer as part of a code. Today's computers are powerful enough to allow 7-day forecasts within hours, and modern teaching of the subject requires a combination of theoretical and computational approaches. The presentation is aimed at beginning graduate students intending to become forecasters or researchers, that is, users of existing models or model developers. However, model developers must be well versed in the underlying physics as well as in numerical methods. Thus, while some of the topics discussed in the modeling of the atmosphere and ocean are more advanced, the book ensures that the gap between those scientists who analyze results from model simulations and observations and those who work with the inner works of the model does not widen further. In this spirit, the course presents methods whereby important balance equations in oceanography and meteorology, namely the advection-diffusion equation and the shallow water equations on a rotating Earth, can be solved by numerical means with little prior knowledge. The numerical focus is on the finite-difference (FD) methods, and although more powerful methods exist, the simplicity of FD makes it ideal as a pedagogical introduction to the subject. The book also includes suitable exercises and computer problems.
Fundamentals of Ocean Climate Models
Author: Stephen Griffies
Publisher: Princeton University Press
ISBN: 0691187126
Category : Science
Languages : en
Pages : 553
Book Description
This book sets forth the physical, mathematical, and numerical foundations of computer models used to understand and predict the global ocean climate system. Aimed at students and researchers of ocean and climate science who seek to understand the physical content of ocean model equations and numerical methods for their solution, it is largely general in formulation and employs modern mathematical techniques. It also highlights certain areas of cutting-edge research. Stephen Griffies presents material that spans a broad spectrum of issues critical for modern ocean climate models. Topics are organized into parts consisting of related chapters, with each part largely self-contained. Early chapters focus on the basic equations arising from classical mechanics and thermodynamics used to rationalize ocean fluid dynamics. These equations are then cast into a form appropriate for numerical models of finite grid resolution. Basic discretization methods are described for commonly used classes of ocean climate models. The book proceeds to focus on the parameterization of phenomena occurring at scales unresolved by the ocean model, which represents a large part of modern oceanographic research. The final part provides a tutorial on the tensor methods that are used throughout the book, in a general and elegant fashion, to formulate the equations.
Publisher: Princeton University Press
ISBN: 0691187126
Category : Science
Languages : en
Pages : 553
Book Description
This book sets forth the physical, mathematical, and numerical foundations of computer models used to understand and predict the global ocean climate system. Aimed at students and researchers of ocean and climate science who seek to understand the physical content of ocean model equations and numerical methods for their solution, it is largely general in formulation and employs modern mathematical techniques. It also highlights certain areas of cutting-edge research. Stephen Griffies presents material that spans a broad spectrum of issues critical for modern ocean climate models. Topics are organized into parts consisting of related chapters, with each part largely self-contained. Early chapters focus on the basic equations arising from classical mechanics and thermodynamics used to rationalize ocean fluid dynamics. These equations are then cast into a form appropriate for numerical models of finite grid resolution. Basic discretization methods are described for commonly used classes of ocean climate models. The book proceeds to focus on the parameterization of phenomena occurring at scales unresolved by the ocean model, which represents a large part of modern oceanographic research. The final part provides a tutorial on the tensor methods that are used throughout the book, in a general and elegant fashion, to formulate the equations.
Dynamics of the Tropical Atmosphere and Oceans
Author: Peter J. Webster
Publisher: John Wiley & Sons
ISBN: 0470662565
Category : Science
Languages : en
Pages : 529
Book Description
This book presents a unique and comprehensive view of the fundamental dynamical and thermodynamic principles underlying the large circulations of the coupled ocean-atmosphere system Dynamics of The Tropical Atmosphere and Oceans provides a detailed description of macroscale tropical circulation systems such as the monsoon, the Hadley and Walker Circulations, El Niño, and the tropical ocean warm pool. These macroscale circulations interact with a myriad of higher frequency systems, ranging from convective cloud systems to migrating equatorial waves that attend the low-frequency background flow. Towards understanding and predicting these circulation systems. A comprehensive overview of the dynamics and thermodynamics of large-scale tropical atmosphere and oceans is presented using both a “reductionist” and “holistic” perspectives of the coupled tropical system. The reductionist perspective provides a detailed description of the individual elements of the ocean and atmospheric circulations. The physical nature of each component of the tropical circulation such as the Hadley and Walker circulations, the monsoon, the incursion of extratropical phenomena into the tropics, precipitation distributions, equatorial waves and disturbances described in detail. The holistic perspective provides a physical description of how the collection of the individual components produces the observed tropical weather and climate. How the collective tropical processes determine the tropical circulation and their role in global weather and climate is provided in a series of overlapping theoretical and modelling constructs. The structure of the book follows a graduated framework. Following a detailed description of tropical phenomenology, the reader is introduced to dynamical and thermodynamical constraints that guide the planetary climate and establish a critical role for the tropics. Equatorial wave theory is developed for simple and complex background flows, including the critical role played by moist processes. The manner in which the tropics and the extratropics interact is then described, followed by a discussion of the physics behind the subtropical and near-equatorial precipitation including arid regions. The El Niño phenomena and the monsoon circulations are discussed, including their covariance and predictability. Finally, the changing structure of the tropics is discussed in terms of the extent of the tropical ocean warm pool and its relationship to the intensity of global convection and climate change. Dynamics of the Tropical Atmosphere and Oceans is aimed at advanced undergraduate and early career graduate students. It also serves as an excellent general reference book for scientists interested in tropical circulations and their relationship with the broader climate system.
Publisher: John Wiley & Sons
ISBN: 0470662565
Category : Science
Languages : en
Pages : 529
Book Description
This book presents a unique and comprehensive view of the fundamental dynamical and thermodynamic principles underlying the large circulations of the coupled ocean-atmosphere system Dynamics of The Tropical Atmosphere and Oceans provides a detailed description of macroscale tropical circulation systems such as the monsoon, the Hadley and Walker Circulations, El Niño, and the tropical ocean warm pool. These macroscale circulations interact with a myriad of higher frequency systems, ranging from convective cloud systems to migrating equatorial waves that attend the low-frequency background flow. Towards understanding and predicting these circulation systems. A comprehensive overview of the dynamics and thermodynamics of large-scale tropical atmosphere and oceans is presented using both a “reductionist” and “holistic” perspectives of the coupled tropical system. The reductionist perspective provides a detailed description of the individual elements of the ocean and atmospheric circulations. The physical nature of each component of the tropical circulation such as the Hadley and Walker circulations, the monsoon, the incursion of extratropical phenomena into the tropics, precipitation distributions, equatorial waves and disturbances described in detail. The holistic perspective provides a physical description of how the collection of the individual components produces the observed tropical weather and climate. How the collective tropical processes determine the tropical circulation and their role in global weather and climate is provided in a series of overlapping theoretical and modelling constructs. The structure of the book follows a graduated framework. Following a detailed description of tropical phenomenology, the reader is introduced to dynamical and thermodynamical constraints that guide the planetary climate and establish a critical role for the tropics. Equatorial wave theory is developed for simple and complex background flows, including the critical role played by moist processes. The manner in which the tropics and the extratropics interact is then described, followed by a discussion of the physics behind the subtropical and near-equatorial precipitation including arid regions. The El Niño phenomena and the monsoon circulations are discussed, including their covariance and predictability. Finally, the changing structure of the tropics is discussed in terms of the extent of the tropical ocean warm pool and its relationship to the intensity of global convection and climate change. Dynamics of the Tropical Atmosphere and Oceans is aimed at advanced undergraduate and early career graduate students. It also serves as an excellent general reference book for scientists interested in tropical circulations and their relationship with the broader climate system.