Functions Of Several Real Variables

Functions Of Several Real Variables PDF Author: Martin Moskowitz
Publisher: World Scientific Publishing Company
ISBN: 9813100915
Category : Mathematics
Languages : en
Pages : 733

Get Book Here

Book Description
This book begins with the basics of the geometry and topology of Euclidean space and continues with the main topics in the theory of functions of several real variables including limits, continuity, differentiation and integration. All topics and in particular, differentiation and integration, are treated in depth and with mathematical rigor. The classical theorems of differentiation and integration such as the Inverse and Implicit Function theorems, Lagrange's multiplier rule, Fubini's theorem, the change of variables formula, Green's, Stokes' and Gauss' theorems are proved in detail and many of them with novel proofs. The authors develop the theory in a logical sequence building one result upon the other, enriching the development with numerous explanatory remarks and historical footnotes. A number of well chosen illustrative examples and counter-examples clarify matters and teach the reader how to apply these results and solve problems in mathematics, the other sciences and economics.Each of the chapters concludes with groups of exercises and problems, many of them with detailed solutions while others with hints or final answers. More advanced topics, such as Morse's lemma, Sard's theorem , the Weierstrass approximation theorem, the Fourier transform, Vector fields on spheres, Brouwer's fixed point theorem, Whitney's embedding theorem, Picard's theorem, and Hermite polynomials are discussed in stared sections.

Functions Of Several Real Variables

Functions Of Several Real Variables PDF Author: Martin Moskowitz
Publisher: World Scientific Publishing Company
ISBN: 9813100915
Category : Mathematics
Languages : en
Pages : 733

Get Book Here

Book Description
This book begins with the basics of the geometry and topology of Euclidean space and continues with the main topics in the theory of functions of several real variables including limits, continuity, differentiation and integration. All topics and in particular, differentiation and integration, are treated in depth and with mathematical rigor. The classical theorems of differentiation and integration such as the Inverse and Implicit Function theorems, Lagrange's multiplier rule, Fubini's theorem, the change of variables formula, Green's, Stokes' and Gauss' theorems are proved in detail and many of them with novel proofs. The authors develop the theory in a logical sequence building one result upon the other, enriching the development with numerous explanatory remarks and historical footnotes. A number of well chosen illustrative examples and counter-examples clarify matters and teach the reader how to apply these results and solve problems in mathematics, the other sciences and economics.Each of the chapters concludes with groups of exercises and problems, many of them with detailed solutions while others with hints or final answers. More advanced topics, such as Morse's lemma, Sard's theorem , the Weierstrass approximation theorem, the Fourier transform, Vector fields on spheres, Brouwer's fixed point theorem, Whitney's embedding theorem, Picard's theorem, and Hermite polynomials are discussed in stared sections.

Several Real Variables

Several Real Variables PDF Author: Shmuel Kantorovitz
Publisher: Springer
ISBN: 3319279564
Category : Mathematics
Languages : en
Pages : 317

Get Book Here

Book Description
This undergraduate textbook is based on lectures given by the author on the differential and integral calculus of functions of several real variables. The book has a modern approach and includes topics such as: •The p-norms on vector space and their equivalence •The Weierstrass and Stone-Weierstrass approximation theorems •The differential as a linear functional; Jacobians, Hessians, and Taylor's theorem in several variables •The Implicit Function Theorem for a system of equations, proved via Banach’s Fixed Point Theorem •Applications to Ordinary Differential Equations •Line integrals and an introduction to surface integrals This book features numerous examples, detailed proofs, as well as exercises at the end of sections. Many of the exercises have detailed solutions, making the book suitable for self-study. Several Real Variables will be useful for undergraduate students in mathematics who have completed first courses in linear algebra and analysis of one real variable.

Functions of Several Variables

Functions of Several Variables PDF Author: Wendell Fleming
Publisher: Springer Science & Business Media
ISBN: 1468494619
Category : Mathematics
Languages : en
Pages : 420

Get Book Here

Book Description
This new edition, like the first, presents a thorough introduction to differential and integral calculus, including the integration of differential forms on manifolds. However, an additional chapter on elementary topology makes the book more complete as an advanced calculus text, and sections have been added introducing physical applications in thermodynamics, fluid dynamics, and classical rigid body mechanics.

Calculus of Several Variables

Calculus of Several Variables PDF Author: Serge Lang
Publisher: Springer Science & Business Media
ISBN: 1461210682
Category : Mathematics
Languages : en
Pages : 624

Get Book Here

Book Description
This new, revised edition covers all of the basic topics in calculus of several variables, including vectors, curves, functions of several variables, gradient, tangent plane, maxima and minima, potential functions, curve integrals, Green’s theorem, multiple integrals, surface integrals, Stokes’ theorem, and the inverse mapping theorem and its consequences. It includes many completely worked-out problems.

Analytic Functions of Several Complex Variables

Analytic Functions of Several Complex Variables PDF Author: Robert C. Gunning
Publisher: American Mathematical Society
ISBN: 1470470667
Category : Mathematics
Languages : en
Pages : 334

Get Book Here

Book Description
The theory of analytic functions of several complex variables enjoyed a period of remarkable development in the middle part of the twentieth century. After initial successes by Poincaré and others in the late 19th and early 20th centuries, the theory encountered obstacles that prevented it from growing quickly into an analogue of the theory for functions of one complex variable. Beginning in the 1930s, initially through the work of Oka, then H. Cartan, and continuing with the work of Grauert, Remmert, and others, new tools were introduced into the theory of several complex variables that resolved many of the open problems and fundamentally changed the landscape of the subject. These tools included a central role for sheaf theory and increased uses of topology and algebra. The book by Gunning and Rossi was the first of the modern era of the theory of several complex variables, which is distinguished by the use of these methods. The intention of Gunning and Rossi's book is to provide an extensive introduction to the Oka-Cartan theory and some of its applications, and to the general theory of analytic spaces. Fundamental concepts and techniques are discussed as early as possible. The first chapter covers material suitable for a one-semester graduate course, presenting many of the central problems and techniques, often in special cases. The later chapters give more detailed expositions of sheaf theory for analytic functions and the theory of complex analytic spaces. Since its original publication, this book has become a classic resource for the modern approach to functions of several complex variables and the theory of analytic spaces. Further information about this book, including updates, can be found at the following URL: www.ams.org/publications/authors/books/postpub/chel-368.

Advanced Calculus of Several Variables

Advanced Calculus of Several Variables PDF Author: C. H. Edwards
Publisher: Academic Press
ISBN: 1483268055
Category : Mathematics
Languages : en
Pages : 470

Get Book Here

Book Description
Advanced Calculus of Several Variables provides a conceptual treatment of multivariable calculus. This book emphasizes the interplay of geometry, analysis through linear algebra, and approximation of nonlinear mappings by linear ones. The classical applications and computational methods that are responsible for much of the interest and importance of calculus are also considered. This text is organized into six chapters. Chapter I deals with linear algebra and geometry of Euclidean n-space Rn. The multivariable differential calculus is treated in Chapters II and III, while multivariable integral calculus is covered in Chapters IV and V. The last chapter is devoted to venerable problems of the calculus of variations. This publication is intended for students who have completed a standard introductory calculus sequence.

Mathematical Analysis

Mathematical Analysis PDF Author: Mariano Giaquinta
Publisher: Springer Science & Business Media
ISBN: 0817644148
Category : Mathematics
Languages : en
Pages : 399

Get Book Here

Book Description
* Embraces a broad range of topics in analysis requiring only a sound knowledge of calculus and the functions of one variable. * Filled with beautiful illustrations, examples, exercises at the end of each chapter, and a comprehensive index.

Elementary Theory of Analytic Functions of One or Several Complex Variables

Elementary Theory of Analytic Functions of One or Several Complex Variables PDF Author: Henri Cartan
Publisher: Courier Corporation
ISBN: 0486318672
Category : Mathematics
Languages : en
Pages : 242

Get Book Here

Book Description
Basic treatment includes existence theorem for solutions of differential systems where data is analytic, holomorphic functions, Cauchy's integral, Taylor and Laurent expansions, more. Exercises. 1973 edition.

Methods of the Theory of Functions of Many Complex Variables

Methods of the Theory of Functions of Many Complex Variables PDF Author: Vasiliy Sergeyevich Vladimirov
Publisher: Courier Corporation
ISBN: 0486458121
Category : Mathematics
Languages : en
Pages : 370

Get Book Here

Book Description
This systematic exposition outlines the fundamentals of the theory of single sheeted domains of holomorphy. It further illustrates applications to quantum field theory, the theory of functions, and differential equations with constant coefficients. Students of quantum field theory will find this text of particular value. The text begins with an introduction that defines the basic concepts and elementary propositions, along with the more salient facts from the theory of functions of real variables and the theory of generalized functions. Subsequent chapters address the theory of plurisubharmonic functions and pseudoconvex domains, along with characteristics of domains of holomorphy. These explorations are further examined in terms of four types of domains: multiple-circular, tubular, semitubular, and Hartogs' domains. Surveys of integral representations focus on the Martinelli-Bochner, Bergman-Weil, and Bochner representations. The final chapter is devoted to applications, particularly those involved in field theory. It employs the theory of generalized functions, along with the theory of functions of several complex variables.

Introduction to Analysis in Several Variables: Advanced Calculus

Introduction to Analysis in Several Variables: Advanced Calculus PDF Author: Michael E. Taylor
Publisher: American Mathematical Soc.
ISBN: 1470456699
Category : Education
Languages : en
Pages : 462

Get Book Here

Book Description
This text was produced for the second part of a two-part sequence on advanced calculus, whose aim is to provide a firm logical foundation for analysis. The first part treats analysis in one variable, and the text at hand treats analysis in several variables. After a review of topics from one-variable analysis and linear algebra, the text treats in succession multivariable differential calculus, including systems of differential equations, and multivariable integral calculus. It builds on this to develop calculus on surfaces in Euclidean space and also on manifolds. It introduces differential forms and establishes a general Stokes formula. It describes various applications of Stokes formula, from harmonic functions to degree theory. The text then studies the differential geometry of surfaces, including geodesics and curvature, and makes contact with degree theory, via the Gauss–Bonnet theorem. The text also takes up Fourier analysis, and bridges this with results on surfaces, via Fourier analysis on spheres and on compact matrix groups.