Author: Jianming Xu
Publisher: Springer Science & Business Media
ISBN: 9400756348
Category : Nature
Languages : en
Pages : 1060
Book Description
Functions of Natural Organic Matter in Changing Environment presents contributions from the 16th Meeting of the International Humic Substances Society (IHSS 16) held in Hangzhou, China on September 9-14, 2012. It provides a comprehensive and updated research advance in the field of characterization, function, application of humic substances (HS) and natural organic matter (NOM) in environment, agriculture, and industry. A broad range of topics are covered: i) formation, structure and characteristics of HS and NOM; ii) HS/NOM and carbon sequestration; iii) HS/NOM and biogeochemical cycling of nutrients; iv) HS/NOM and the environmental processes of toxic elements and anthropogenic organics; v) HS/NOM, naturally occurring and engineered nanoparticles; vi) HS/NOM, biodiversity and ecosystem health; vii) HS/NOM in water and water treatment; viii) characterization and function of biochar in the environment; and ix) industrial products and application of HS. The book will be an invaluable reference for chemists, biologists, environmental scientists, ecologists, soil scientists, water scientists, agronomists, global change researchers and policy makers. Jianming Xu is Professor and Director at the Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou, China. Jianjun Wu is Professor at the Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou, China. Yan He is Associate Professor at the Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou, China.
Functions of Natural Organic Matter in Changing Environment
Author: Jianming Xu
Publisher: Springer Science & Business Media
ISBN: 9400756348
Category : Nature
Languages : en
Pages : 1060
Book Description
Functions of Natural Organic Matter in Changing Environment presents contributions from the 16th Meeting of the International Humic Substances Society (IHSS 16) held in Hangzhou, China on September 9-14, 2012. It provides a comprehensive and updated research advance in the field of characterization, function, application of humic substances (HS) and natural organic matter (NOM) in environment, agriculture, and industry. A broad range of topics are covered: i) formation, structure and characteristics of HS and NOM; ii) HS/NOM and carbon sequestration; iii) HS/NOM and biogeochemical cycling of nutrients; iv) HS/NOM and the environmental processes of toxic elements and anthropogenic organics; v) HS/NOM, naturally occurring and engineered nanoparticles; vi) HS/NOM, biodiversity and ecosystem health; vii) HS/NOM in water and water treatment; viii) characterization and function of biochar in the environment; and ix) industrial products and application of HS. The book will be an invaluable reference for chemists, biologists, environmental scientists, ecologists, soil scientists, water scientists, agronomists, global change researchers and policy makers. Jianming Xu is Professor and Director at the Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou, China. Jianjun Wu is Professor at the Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou, China. Yan He is Associate Professor at the Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou, China.
Publisher: Springer Science & Business Media
ISBN: 9400756348
Category : Nature
Languages : en
Pages : 1060
Book Description
Functions of Natural Organic Matter in Changing Environment presents contributions from the 16th Meeting of the International Humic Substances Society (IHSS 16) held in Hangzhou, China on September 9-14, 2012. It provides a comprehensive and updated research advance in the field of characterization, function, application of humic substances (HS) and natural organic matter (NOM) in environment, agriculture, and industry. A broad range of topics are covered: i) formation, structure and characteristics of HS and NOM; ii) HS/NOM and carbon sequestration; iii) HS/NOM and biogeochemical cycling of nutrients; iv) HS/NOM and the environmental processes of toxic elements and anthropogenic organics; v) HS/NOM, naturally occurring and engineered nanoparticles; vi) HS/NOM, biodiversity and ecosystem health; vii) HS/NOM in water and water treatment; viii) characterization and function of biochar in the environment; and ix) industrial products and application of HS. The book will be an invaluable reference for chemists, biologists, environmental scientists, ecologists, soil scientists, water scientists, agronomists, global change researchers and policy makers. Jianming Xu is Professor and Director at the Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou, China. Jianjun Wu is Professor at the Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou, China. Yan He is Associate Professor at the Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou, China.
Functions of Natural Organic Matter in Changing Environment
Author: Jianming Xu
Publisher:
ISBN: 9787308102711
Category : SCIENCE
Languages : en
Pages : 1149
Book Description
Functions of Natural Organic Matter in Changing Environment presents contributions from the 16th Meeting of the International Humic Substances Society (IHSS 16) held in Hangzhou, China on September 9-14, 2012. It provides a comprehensive and updated research advance in the field of characterization, function, application of humic substances (HS) and natural organic matter (NOM) in environment, agriculture, and industry. A broad range of topics are covered: i) formation, structure and characteristics of HS and NOM; ii) HS/NOM and carbon sequestration; iii) HS/NOM and biogeochemical cycling of nutrients; iv) HS/NOM and the environmental processes of toxic elements and anthropogenic organics; v) HS/NOM, naturally occurring and engineered nanoparticles; vi) HS/NOM, biodiversity and ecosystem health; vii) HS/NOM in water and water treatment; viii) characterization and function of biochar in the environment; and ix) industrial products and application of HS. The book will be an invaluable reference for chemists, biologists, environmental scientists, ecologists, soil scientists, water scientists, agronomists, global change researchers and policy makers.Jianming Xu is Professor and Director at the Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou, China.Jianjun Wu is Professor at the Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou, China.Yan He is Associate Professor at the Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou, China.
Publisher:
ISBN: 9787308102711
Category : SCIENCE
Languages : en
Pages : 1149
Book Description
Functions of Natural Organic Matter in Changing Environment presents contributions from the 16th Meeting of the International Humic Substances Society (IHSS 16) held in Hangzhou, China on September 9-14, 2012. It provides a comprehensive and updated research advance in the field of characterization, function, application of humic substances (HS) and natural organic matter (NOM) in environment, agriculture, and industry. A broad range of topics are covered: i) formation, structure and characteristics of HS and NOM; ii) HS/NOM and carbon sequestration; iii) HS/NOM and biogeochemical cycling of nutrients; iv) HS/NOM and the environmental processes of toxic elements and anthropogenic organics; v) HS/NOM, naturally occurring and engineered nanoparticles; vi) HS/NOM, biodiversity and ecosystem health; vii) HS/NOM in water and water treatment; viii) characterization and function of biochar in the environment; and ix) industrial products and application of HS. The book will be an invaluable reference for chemists, biologists, environmental scientists, ecologists, soil scientists, water scientists, agronomists, global change researchers and policy makers.Jianming Xu is Professor and Director at the Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou, China.Jianjun Wu is Professor at the Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou, China.Yan He is Associate Professor at the Institute of Soil and Water Resources and Environmental Science, Zhejiang University, Hangzhou, China.
Biogeochemistry of Marine Dissolved Organic Matter
Author: Dennis A. Hansell
Publisher: Academic Press
ISBN: 0124071538
Category : Science
Languages : en
Pages : 712
Book Description
Marine dissolved organic matter (DOM) is a complex mixture of molecules found throughout the world's oceans. It plays a key role in the export, distribution, and sequestration of carbon in the oceanic water column, posited to be a source of atmospheric climate regulation. Biogeochemistry of Marine Dissolved Organic Matter, Second Edition, focuses on the chemical constituents of DOM and its biogeochemical, biological, and ecological significance in the global ocean, and provides a single, unique source for the references, information, and informed judgments of the community of marine biogeochemists. Presented by some of the world's leading scientists, this revised edition reports on the major advances in this area and includes new chapters covering the role of DOM in ancient ocean carbon cycles, the long term stability of marine DOM, the biophysical dynamics of DOM, fluvial DOM qualities and fate, and the Mediterranean Sea. Biogeochemistry of Marine Dissolved Organic Matter, Second Edition, is an extremely useful resource that helps people interested in the largest pool of active carbon on the planet (DOC) get a firm grounding on the general paradigms and many of the relevant references on this topic. - Features up-to-date knowledge of DOM, including five new chapters - The only published work to synthesize recent research on dissolved organic carbon in the Mediterranean Sea - Includes chapters that address inputs from freshwater terrestrial DOM
Publisher: Academic Press
ISBN: 0124071538
Category : Science
Languages : en
Pages : 712
Book Description
Marine dissolved organic matter (DOM) is a complex mixture of molecules found throughout the world's oceans. It plays a key role in the export, distribution, and sequestration of carbon in the oceanic water column, posited to be a source of atmospheric climate regulation. Biogeochemistry of Marine Dissolved Organic Matter, Second Edition, focuses on the chemical constituents of DOM and its biogeochemical, biological, and ecological significance in the global ocean, and provides a single, unique source for the references, information, and informed judgments of the community of marine biogeochemists. Presented by some of the world's leading scientists, this revised edition reports on the major advances in this area and includes new chapters covering the role of DOM in ancient ocean carbon cycles, the long term stability of marine DOM, the biophysical dynamics of DOM, fluvial DOM qualities and fate, and the Mediterranean Sea. Biogeochemistry of Marine Dissolved Organic Matter, Second Edition, is an extremely useful resource that helps people interested in the largest pool of active carbon on the planet (DOC) get a firm grounding on the general paradigms and many of the relevant references on this topic. - Features up-to-date knowledge of DOM, including five new chapters - The only published work to synthesize recent research on dissolved organic carbon in the Mediterranean Sea - Includes chapters that address inputs from freshwater terrestrial DOM
Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems
Author: Nicola Senesi
Publisher: John Wiley & Sons
ISBN: 0470494948
Category : Science
Languages : en
Pages : 905
Book Description
An up-to-date resource on natural nonliving organic matter Bringing together world-renowned researchers to explore natural nonliving organic matter (NOM) and its chemical, biological, and ecological importance, Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems offers an integrated view of the dynamics and processes of NOM. This multidisciplinary approach allows for a comprehensive treatment encompassing all the formation processes, properties, reactions, environments, and analytical techniques associated with the latest research on NOM. After briefly outlining the historical background, current ideas, and future prospects of the study of NOM, the coverage examines: The formation mechanisms of humic substances Organo-clay complexes The effects of organic matter amendment Black carbon in the environment Carbon sequestration and dynamics in soil Biological activities of humic substances Dissolved organic matter Humic substances in the rhizosphere Marine organic matter Organic matter in atmospheric particles In addition to the above topics, the coverage includes such relevant analytical techniques as separation technology; analytical pyrolysis and soft-ionization mass spectrometry; nuclear magnetic resonance; EPR, FTIR, Raman, UV-visible adsorption, fluorescence, and X-ray spectroscopies; and thermal analysis. Hundreds of illustrations and photographs further illuminate the various chapters. An essential resource for both students and professionals in environmental science, environmental engineering, water science, soil science, geology, and environmental chemistry, Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems provides a unique combination of the latest discoveries, developments, and future prospects in this field.
Publisher: John Wiley & Sons
ISBN: 0470494948
Category : Science
Languages : en
Pages : 905
Book Description
An up-to-date resource on natural nonliving organic matter Bringing together world-renowned researchers to explore natural nonliving organic matter (NOM) and its chemical, biological, and ecological importance, Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems offers an integrated view of the dynamics and processes of NOM. This multidisciplinary approach allows for a comprehensive treatment encompassing all the formation processes, properties, reactions, environments, and analytical techniques associated with the latest research on NOM. After briefly outlining the historical background, current ideas, and future prospects of the study of NOM, the coverage examines: The formation mechanisms of humic substances Organo-clay complexes The effects of organic matter amendment Black carbon in the environment Carbon sequestration and dynamics in soil Biological activities of humic substances Dissolved organic matter Humic substances in the rhizosphere Marine organic matter Organic matter in atmospheric particles In addition to the above topics, the coverage includes such relevant analytical techniques as separation technology; analytical pyrolysis and soft-ionization mass spectrometry; nuclear magnetic resonance; EPR, FTIR, Raman, UV-visible adsorption, fluorescence, and X-ray spectroscopies; and thermal analysis. Hundreds of illustrations and photographs further illuminate the various chapters. An essential resource for both students and professionals in environmental science, environmental engineering, water science, soil science, geology, and environmental chemistry, Biophysico-Chemical Processes Involving Natural Nonliving Organic Matter in Environmental Systems provides a unique combination of the latest discoveries, developments, and future prospects in this field.
Natural Organic Matter in Water
Author: Mika Sillanpää
Publisher: Butterworth-Heinemann
ISBN: 0128017198
Category : Technology & Engineering
Languages : en
Pages : 383
Book Description
Approximately 77 percent of the freshwater used in the United States comes from surface-water sources and is subject to natural organic matter contamination according to the United States Geological Survey. This presents a distinct challenge to water treatment engineers. An essential resource to the latest breakthroughs in the characterization, treatment and removal of natural organic matter (NOM) from drinking water, Natural Organic Matter in Waters: Characterization and Treatment Methods focuses on advance filtration and treatment options, and processes for reducing disinfection byproducts. Based on the author's years of research and field experience, this book begins with the characterization of NOM including: general parameters, isolation and concentration, fractionation, composition and structural analysis and biological testing. This is followed by removal methods such as inorganic coagulants, polyelectrolytes and composite coagulants. Electrochemical and membranes removal methods such as: electrocoagulation, electrochemical oxidation, microfiltration and ultrafiltration, nanofiltration and membrane fouling. - Covers conventional as well as advanced NOM removal methods - Includes characterization methods of NOM - Explains removal methods such as: removal by coagulation, electrochemical, advanced oxidation, and integrated methods
Publisher: Butterworth-Heinemann
ISBN: 0128017198
Category : Technology & Engineering
Languages : en
Pages : 383
Book Description
Approximately 77 percent of the freshwater used in the United States comes from surface-water sources and is subject to natural organic matter contamination according to the United States Geological Survey. This presents a distinct challenge to water treatment engineers. An essential resource to the latest breakthroughs in the characterization, treatment and removal of natural organic matter (NOM) from drinking water, Natural Organic Matter in Waters: Characterization and Treatment Methods focuses on advance filtration and treatment options, and processes for reducing disinfection byproducts. Based on the author's years of research and field experience, this book begins with the characterization of NOM including: general parameters, isolation and concentration, fractionation, composition and structural analysis and biological testing. This is followed by removal methods such as inorganic coagulants, polyelectrolytes and composite coagulants. Electrochemical and membranes removal methods such as: electrocoagulation, electrochemical oxidation, microfiltration and ultrafiltration, nanofiltration and membrane fouling. - Covers conventional as well as advanced NOM removal methods - Includes characterization methods of NOM - Explains removal methods such as: removal by coagulation, electrochemical, advanced oxidation, and integrated methods
Photobiogeochemistry of Organic Matter
Author: Khan M.G. Mostofa
Publisher: Springer Science & Business Media
ISBN: 3642322239
Category : Science
Languages : en
Pages : 919
Book Description
Photoinduced processes, caused by natural sunlight, are key functions for sustaining all living organisms through production and transformation of organic matter (OM) in the biosphere. Production of hydrogen peroxide (H2O2) from OM is a primary step of photoinduced processes, because H2O2 acts as strong reductant and oxidant. It is potentially important in many aquatic reactions, also in association with photosynthesis. Allochthonous and autochthonous dissolved organic matter (DOM) can be involved into several photoinduced or biological processes. DOM subsequently undergoes several physical, chemical, photoinduced and biological processes, which can be affected by global warming. This book is uniquely structured to overview some vital issues, such as: DOM; H2O2 and ROOH; HO•; Degradation of DOM; CDOM, FDOM; Photosynthesis; Chlorophyll; Metal complexation, and Global warming, as well as their mutual interrelationships, based on updated scientific results.
Publisher: Springer Science & Business Media
ISBN: 3642322239
Category : Science
Languages : en
Pages : 919
Book Description
Photoinduced processes, caused by natural sunlight, are key functions for sustaining all living organisms through production and transformation of organic matter (OM) in the biosphere. Production of hydrogen peroxide (H2O2) from OM is a primary step of photoinduced processes, because H2O2 acts as strong reductant and oxidant. It is potentially important in many aquatic reactions, also in association with photosynthesis. Allochthonous and autochthonous dissolved organic matter (DOM) can be involved into several photoinduced or biological processes. DOM subsequently undergoes several physical, chemical, photoinduced and biological processes, which can be affected by global warming. This book is uniquely structured to overview some vital issues, such as: DOM; H2O2 and ROOH; HO•; Degradation of DOM; CDOM, FDOM; Photosynthesis; Chlorophyll; Metal complexation, and Global warming, as well as their mutual interrelationships, based on updated scientific results.
Aquatic Organic Matter Fluorescence
Author: Paula G. Coble
Publisher: Cambridge University Press
ISBN: 0521764610
Category : Science
Languages : en
Pages : 407
Book Description
A core text on principles, laboratory/field methodologies, and data interpretation for fluorescence applications in aquatic science, for advanced students and researchers.
Publisher: Cambridge University Press
ISBN: 0521764610
Category : Science
Languages : en
Pages : 407
Book Description
A core text on principles, laboratory/field methodologies, and data interpretation for fluorescence applications in aquatic science, for advanced students and researchers.
Aquatic Humic Substances
Author: I. H. Suffet
Publisher:
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 906
Book Description
Here is a cohesive compilation of recent research results into the many aspects of water purification. Major sections cover the characterization and environmental impact of aquatic humic substances, their reactions in natural water and sediments, and their influences on water treatment. Topics examined include hazardous waste chemicals, water solubility enhancement, sorption, metal speciation, and photochemistry. Specific types of treatment processes are also described.
Publisher:
ISBN:
Category : Language Arts & Disciplines
Languages : en
Pages : 906
Book Description
Here is a cohesive compilation of recent research results into the many aspects of water purification. Major sections cover the characterization and environmental impact of aquatic humic substances, their reactions in natural water and sediments, and their influences on water treatment. Topics examined include hazardous waste chemicals, water solubility enhancement, sorption, metal speciation, and photochemistry. Specific types of treatment processes are also described.
Soil Organic Carbon and Feeding the Future
Author: Rattan Lal
Publisher: CRC Press
ISBN: 1000512916
Category : Science
Languages : en
Pages : 338
Book Description
Soil organic matter (SOM) is a highly reactive constituent of the soil matrix because of its large surface area, high ion exchange capacity, enormous affinity for water due to hygroscopicity, and capacity to form organo-mineral complexes. It is an important source and sink of atmospheric CO2 and other greenhouse gases depending on climate, land use, soil and crop management, and a wide range of abiotic and biotic factors, including the human dimensions of socioeconomic and political factors. Agroecosystems are among important controls of the global carbon cycle with a strong impact on anthropogenic or abrupt climate change. This volume of Advances in Soil Sciences explains pedological processes set-in-motion by increases in SOM content of depleted and degraded soils. It discusses the relationship between SOM content and critical soil quality parameters including aggregation, water retention and transport, aeration and gaseous exchange, and chemical composition of soil air. The book identifies policy options needed to translate science into action for making sustainable management of SOM as a strategy for adaptation to and mitigation of climate change. Features: Relates soil organic matter stock to soil processes, climate parameters, vegetation, landscape attributes Establishes relationships between soil organic matter and land use, species, and climate Identifies land use systems for protecting and restoring soil organic matter stock Links soil organic matter stock with the global carbon cycle for mitigation of climate change Part of the Advances in Soil Sciences series, this volume will appeal to agricultural, environmental, and soil scientists demonstrating the link between soil organic matter stock and provisioning of critical ecosystem services for nature and humans.
Publisher: CRC Press
ISBN: 1000512916
Category : Science
Languages : en
Pages : 338
Book Description
Soil organic matter (SOM) is a highly reactive constituent of the soil matrix because of its large surface area, high ion exchange capacity, enormous affinity for water due to hygroscopicity, and capacity to form organo-mineral complexes. It is an important source and sink of atmospheric CO2 and other greenhouse gases depending on climate, land use, soil and crop management, and a wide range of abiotic and biotic factors, including the human dimensions of socioeconomic and political factors. Agroecosystems are among important controls of the global carbon cycle with a strong impact on anthropogenic or abrupt climate change. This volume of Advances in Soil Sciences explains pedological processes set-in-motion by increases in SOM content of depleted and degraded soils. It discusses the relationship between SOM content and critical soil quality parameters including aggregation, water retention and transport, aeration and gaseous exchange, and chemical composition of soil air. The book identifies policy options needed to translate science into action for making sustainable management of SOM as a strategy for adaptation to and mitigation of climate change. Features: Relates soil organic matter stock to soil processes, climate parameters, vegetation, landscape attributes Establishes relationships between soil organic matter and land use, species, and climate Identifies land use systems for protecting and restoring soil organic matter stock Links soil organic matter stock with the global carbon cycle for mitigation of climate change Part of the Advances in Soil Sciences series, this volume will appeal to agricultural, environmental, and soil scientists demonstrating the link between soil organic matter stock and provisioning of critical ecosystem services for nature and humans.
Soil Organic Matter and Feeding the Future
Author: Rattan Lal
Publisher: CRC Press
ISBN: 1000483916
Category : Science
Languages : en
Pages : 428
Book Description
Soil organic matter (SOM) is the primary determinant of soil functionality. Soil organic carbon (SOC) accounts for 50% of the SOM content, accompanied by nitrogen, phosphorus, and a range of macro and micro elements. As a dynamic component, SOM is a source of numerous ecosystem services critical to human well-being and nature conservancy. Important among these goods and services generated by SOM include moderation of climate as a source or sink of atmospheric CO2 and other greenhouse gases, storage and purification of water, a source of energy and habitat for biota (macro, meso, and micro-organisms), a medium for plant growth, cycling of elements (N, P, S, etc.), and generation of net primary productivity (NPP). The quality and quantity of NPP has direct impacts on the food and nutritional security of the growing and increasingly affluent human population. Soils of agroecosystems are depleted of their SOC reserves in comparison with those of natural ecosystems. The magnitude of depletion depends on land use and the type and severity of degradation. Soils prone to accelerated erosion can be strongly depleted of their SOC reserves, especially those in the surface layer. Therefore, conservation through restorative land use and adoption of recommended management practices to create a positive soil-ecosystem carbon budget can increase carbon stock and soil health. This volume of Advances in Soil Sciences aims to accomplish the following: Present impacts of land use and soil management on SOC dynamics Discuss effects of SOC levels on agronomic productivity and use efficiency of inputs Detail potential of soil management on the rate and cumulative amount of carbon sequestration in relation to land use and soil/crop management Deliberate the cause-effect relationship between SOC content and provisioning of some ecosystem services Relate soil organic carbon stock to soil properties and processes Establish the relationship between soil organic carbon stock with land and climate Identify controls of making soil organic carbon stock as a source or sink of CO2 Connect soil organic carbon and carbon sequestration for climate mitigation and adaptation
Publisher: CRC Press
ISBN: 1000483916
Category : Science
Languages : en
Pages : 428
Book Description
Soil organic matter (SOM) is the primary determinant of soil functionality. Soil organic carbon (SOC) accounts for 50% of the SOM content, accompanied by nitrogen, phosphorus, and a range of macro and micro elements. As a dynamic component, SOM is a source of numerous ecosystem services critical to human well-being and nature conservancy. Important among these goods and services generated by SOM include moderation of climate as a source or sink of atmospheric CO2 and other greenhouse gases, storage and purification of water, a source of energy and habitat for biota (macro, meso, and micro-organisms), a medium for plant growth, cycling of elements (N, P, S, etc.), and generation of net primary productivity (NPP). The quality and quantity of NPP has direct impacts on the food and nutritional security of the growing and increasingly affluent human population. Soils of agroecosystems are depleted of their SOC reserves in comparison with those of natural ecosystems. The magnitude of depletion depends on land use and the type and severity of degradation. Soils prone to accelerated erosion can be strongly depleted of their SOC reserves, especially those in the surface layer. Therefore, conservation through restorative land use and adoption of recommended management practices to create a positive soil-ecosystem carbon budget can increase carbon stock and soil health. This volume of Advances in Soil Sciences aims to accomplish the following: Present impacts of land use and soil management on SOC dynamics Discuss effects of SOC levels on agronomic productivity and use efficiency of inputs Detail potential of soil management on the rate and cumulative amount of carbon sequestration in relation to land use and soil/crop management Deliberate the cause-effect relationship between SOC content and provisioning of some ecosystem services Relate soil organic carbon stock to soil properties and processes Establish the relationship between soil organic carbon stock with land and climate Identify controls of making soil organic carbon stock as a source or sink of CO2 Connect soil organic carbon and carbon sequestration for climate mitigation and adaptation