Author: Marie-Isabelle Baraton
Publisher: Springer Science & Business Media
ISBN: 9401007020
Category : Technology & Engineering
Languages : en
Pages : 315
Book Description
The NATO Advanced Study Institute on "Functional Gradient Materials and Surface Layers Prepared by Fine Particles Technology" was held in Kiev (Ukraine) on June 18- 28, 2000 where more than 90 participants, ranging from Ph.D. students to experienced senior scientists, met and exchanged ideas. This meeting was aimed at stimulating the research work across traditional disciplinary lines by bringing together scientists from diverse research areas related to functional gradient materials and surface layers. It also intended to give opportunities for initiating collaborative works between scientists from NATO and Partner countries and to trigger fruitful and exciting discussions between experienced and young researchers. In this respect, this NATO-ASI has been quite successful. The term of functional gradient materials which originates from Japan in the 1980's describes a class of engineering materials with spatially inhomogeneous microstructures and properties (MRS Bulletin, 1995,20, N°l). These materials can be successfully utilized in various applications like electronic devices, optical films, anti wear and anti-corrosion coatings, thermal barrier coatings, biomaterials, to name only a few. Although these functional gradient materials are not fundamentally new, the use of nanoparticles in their fabrication and in surface layers as well has greatly improved their performances to meet challenging requirements for industrial applications.
Functional Gradient Materials and Surface Layers Prepared by Fine Particles Technology
Author: Marie-Isabelle Baraton
Publisher: Springer Science & Business Media
ISBN: 9401007020
Category : Technology & Engineering
Languages : en
Pages : 315
Book Description
The NATO Advanced Study Institute on "Functional Gradient Materials and Surface Layers Prepared by Fine Particles Technology" was held in Kiev (Ukraine) on June 18- 28, 2000 where more than 90 participants, ranging from Ph.D. students to experienced senior scientists, met and exchanged ideas. This meeting was aimed at stimulating the research work across traditional disciplinary lines by bringing together scientists from diverse research areas related to functional gradient materials and surface layers. It also intended to give opportunities for initiating collaborative works between scientists from NATO and Partner countries and to trigger fruitful and exciting discussions between experienced and young researchers. In this respect, this NATO-ASI has been quite successful. The term of functional gradient materials which originates from Japan in the 1980's describes a class of engineering materials with spatially inhomogeneous microstructures and properties (MRS Bulletin, 1995,20, N°l). These materials can be successfully utilized in various applications like electronic devices, optical films, anti wear and anti-corrosion coatings, thermal barrier coatings, biomaterials, to name only a few. Although these functional gradient materials are not fundamentally new, the use of nanoparticles in their fabrication and in surface layers as well has greatly improved their performances to meet challenging requirements for industrial applications.
Publisher: Springer Science & Business Media
ISBN: 9401007020
Category : Technology & Engineering
Languages : en
Pages : 315
Book Description
The NATO Advanced Study Institute on "Functional Gradient Materials and Surface Layers Prepared by Fine Particles Technology" was held in Kiev (Ukraine) on June 18- 28, 2000 where more than 90 participants, ranging from Ph.D. students to experienced senior scientists, met and exchanged ideas. This meeting was aimed at stimulating the research work across traditional disciplinary lines by bringing together scientists from diverse research areas related to functional gradient materials and surface layers. It also intended to give opportunities for initiating collaborative works between scientists from NATO and Partner countries and to trigger fruitful and exciting discussions between experienced and young researchers. In this respect, this NATO-ASI has been quite successful. The term of functional gradient materials which originates from Japan in the 1980's describes a class of engineering materials with spatially inhomogeneous microstructures and properties (MRS Bulletin, 1995,20, N°l). These materials can be successfully utilized in various applications like electronic devices, optical films, anti wear and anti-corrosion coatings, thermal barrier coatings, biomaterials, to name only a few. Although these functional gradient materials are not fundamentally new, the use of nanoparticles in their fabrication and in surface layers as well has greatly improved their performances to meet challenging requirements for industrial applications.
Nanostructured Materials and Coatings for Biomedical and Sensor Applications
Author: Yury G. Gogotsi
Publisher: Springer Science & Business Media
ISBN: 940100157X
Category : Technology & Engineering
Languages : en
Pages : 394
Book Description
This volume contains papers that were presented at the NATO Advanced Research Workshop on Nanostructured Materials and Coatings for Biomedical and Sensor Applications held in Kyiv, Ukraine, 4-8 August, 2002. A total of 104 scientists from 14 countries participated in our ARW, making it a really international event. Participants ranged from graduate students to senior researchers. They presented 16 tutorial lectures, 20 short talks and more than 70 posters. Invited speakers, from NATO and Partner countries, presented some of the most recent developments in physics, chemistry and technology of nanosized materials. A broad range of speakers having international standing and representing NATO and partner countries, as well as university, industrial and govemment research laboratories participated in this meeting and wrote papers for this volume. Foregoing ARW gathered together the scientists working in the area of nanosized materials and coatings and their applications in biomedicine and sensors. The first objective of this AR W was to discuss the current research covering a wide range of physical and chemical properties of biomaterials and their use. Active discussion of oral presentations and posters, and the round table discussion gave a good opportunity to researchers from academia and industry to discuss the achievements in this field and outline future directions in terms of technological developments and product commercialisation in the fields of biomedicine and sensors. Particularly, advanced ceramics and nanostructured carbons were covered in many presentations.
Publisher: Springer Science & Business Media
ISBN: 940100157X
Category : Technology & Engineering
Languages : en
Pages : 394
Book Description
This volume contains papers that were presented at the NATO Advanced Research Workshop on Nanostructured Materials and Coatings for Biomedical and Sensor Applications held in Kyiv, Ukraine, 4-8 August, 2002. A total of 104 scientists from 14 countries participated in our ARW, making it a really international event. Participants ranged from graduate students to senior researchers. They presented 16 tutorial lectures, 20 short talks and more than 70 posters. Invited speakers, from NATO and Partner countries, presented some of the most recent developments in physics, chemistry and technology of nanosized materials. A broad range of speakers having international standing and representing NATO and partner countries, as well as university, industrial and govemment research laboratories participated in this meeting and wrote papers for this volume. Foregoing ARW gathered together the scientists working in the area of nanosized materials and coatings and their applications in biomedicine and sensors. The first objective of this AR W was to discuss the current research covering a wide range of physical and chemical properties of biomaterials and their use. Active discussion of oral presentations and posters, and the round table discussion gave a good opportunity to researchers from academia and industry to discuss the achievements in this field and outline future directions in terms of technological developments and product commercialisation in the fields of biomedicine and sensors. Particularly, advanced ceramics and nanostructured carbons were covered in many presentations.
Mechanical Properties of Nanocrystalline Materials
Author: James C. M. Li
Publisher: CRC Press
ISBN: 9814241970
Category : Science
Languages : en
Pages : 346
Book Description
This book concentrates on both understanding and development of nanocrystalline materials. The original relation that connects grain size and strength, known as the Hall-Petch relation, is studied in the nanometer grain size region. The breakdown of such a relation is a challenge. Why and how to overcome it? Is the dislocation mechanism still operating when the grain size is very small, approaching the amorphous limit? How do we go from the microstructure information to the continuum description of the mechanical properties?
Publisher: CRC Press
ISBN: 9814241970
Category : Science
Languages : en
Pages : 346
Book Description
This book concentrates on both understanding and development of nanocrystalline materials. The original relation that connects grain size and strength, known as the Hall-Petch relation, is studied in the nanometer grain size region. The breakdown of such a relation is a challenge. Why and how to overcome it? Is the dislocation mechanism still operating when the grain size is very small, approaching the amorphous limit? How do we go from the microstructure information to the continuum description of the mechanical properties?
Nanomaterials in Tissue Engineering
Author: A K Gaharwar
Publisher: Elsevier
ISBN: 0857097237
Category : Technology & Engineering
Languages : en
Pages : 481
Book Description
Nanomaterial technologies can be used to fabricate high-performance biomaterials with tailored physical, chemical, and biological properties. They are therefore an area of interest for emerging biomedical technologies such as scaffolding, tissue regeneration, and controlled drug delivery. Nanomaterials in tissue engineering explores the fabrication of a variety of nanomaterials and the use of these materials across a range of tissue engineering applications.Part one focuses on the fabrication of nanomaterials for tissue engineering applications and includes chapters on engineering nanoporous biomaterials, layer-by-layer self-assembly techniques for nanostructured devices, and the synthesis of carbon based nanomaterials. Part two goes on to highlight the application of nanomaterials in soft tissue engineering and includes chapters on cardiac, neural, and cartilage tissue engineering. Finally, the use of nanomaterials in hard tissue engineering applications, including bone, dental and craniofacial tissue engineering is discussed in part three.Nanomaterials in tissue engineering is a standard reference for researchers and tissue engineers with an interest in nanomaterials, laboratories investigating biomaterials, and academics interested in materials science, chemical engineering, biomedical engineering and biological sciences. - Explores the fabrication of a variety of nanomaterials and their use across a range of tissue engineering applications - Examines engineering nanoporous biomaterials, layer-by-layer self-assembly techniques for nanostructured devices, and the synthesis of carbon based nanomaterials - Highlights the application of nanomaterials in soft tissue engineering and includes chapters on cardiac, neural, and cartilage tissue engineering
Publisher: Elsevier
ISBN: 0857097237
Category : Technology & Engineering
Languages : en
Pages : 481
Book Description
Nanomaterial technologies can be used to fabricate high-performance biomaterials with tailored physical, chemical, and biological properties. They are therefore an area of interest for emerging biomedical technologies such as scaffolding, tissue regeneration, and controlled drug delivery. Nanomaterials in tissue engineering explores the fabrication of a variety of nanomaterials and the use of these materials across a range of tissue engineering applications.Part one focuses on the fabrication of nanomaterials for tissue engineering applications and includes chapters on engineering nanoporous biomaterials, layer-by-layer self-assembly techniques for nanostructured devices, and the synthesis of carbon based nanomaterials. Part two goes on to highlight the application of nanomaterials in soft tissue engineering and includes chapters on cardiac, neural, and cartilage tissue engineering. Finally, the use of nanomaterials in hard tissue engineering applications, including bone, dental and craniofacial tissue engineering is discussed in part three.Nanomaterials in tissue engineering is a standard reference for researchers and tissue engineers with an interest in nanomaterials, laboratories investigating biomaterials, and academics interested in materials science, chemical engineering, biomedical engineering and biological sciences. - Explores the fabrication of a variety of nanomaterials and their use across a range of tissue engineering applications - Examines engineering nanoporous biomaterials, layer-by-layer self-assembly techniques for nanostructured devices, and the synthesis of carbon based nanomaterials - Highlights the application of nanomaterials in soft tissue engineering and includes chapters on cardiac, neural, and cartilage tissue engineering
Progress in Thermal Barrier Coatings
Author: ACerS (American Ceramics Society, The)
Publisher: John Wiley & Sons
ISBN: 0470408383
Category : Technology & Engineering
Languages : en
Pages : 642
Book Description
This edition of the Progress in Ceramic Technology series compiles articles published on thermal barrier coatings (TBCs) by The American Ceramic Society (ACerS). It collects in one resource the current research papers on materials-related aspects of thermal barrier coatings and associated technologies. Logically organized and carefully selected, the papers in this edition divide into six categories: Applications Material Improvements and Novel Compositions Developments in Processing Mechanical Properties Thermal Properties Citations follow each title in the table of contents, making this a key resource for professionals and academia.
Publisher: John Wiley & Sons
ISBN: 0470408383
Category : Technology & Engineering
Languages : en
Pages : 642
Book Description
This edition of the Progress in Ceramic Technology series compiles articles published on thermal barrier coatings (TBCs) by The American Ceramic Society (ACerS). It collects in one resource the current research papers on materials-related aspects of thermal barrier coatings and associated technologies. Logically organized and carefully selected, the papers in this edition divide into six categories: Applications Material Improvements and Novel Compositions Developments in Processing Mechanical Properties Thermal Properties Citations follow each title in the table of contents, making this a key resource for professionals and academia.
Nanomaterials Handbook
Author: Yury Gogotsi
Publisher: CRC Press
ISBN: 1420004018
Category : Technology & Engineering
Languages : en
Pages : 801
Book Description
Even before it was identified as a science and given a name, nanotechnology was the province of the most innovative inventors. In medieval times, craftsmen, ingeniously employing nanometer-sized gold particles, created the enchanting red hues found in the gold ruby glass of cathedral windows. Today, nanomaterials are being just as creatively used to improve old products, as well as usher in new ones. From tires to CRTs to sunscreens, nanomaterials are becoming a part of every industry. The Nanomaterials Handbook provides a comprehensive overview of the current state of nanomaterials. Employing terminology familiar to materials scientists and engineers, it provides an introduction that delves into the unique nature of nanomaterials. Looking at the quantum effects that come into play and other characteristics realized at the nano level, it explains how the properties displayed by nanomaterials can differ from those displayed by single crystals and conventional microstructured, monolithic, or composite materials. The introduction is followed by an in-depth investigation of carbon-based nanomaterials, which are as important to nanotechnology as silicon is to electronics. However, it goes beyond the usual discussion of nanotubes and nanofibers to consider graphite whiskers, cones and polyhedral crystals, and nanocrystalline diamonds. It also provides significant new information with regard to nanostructured semiconductors, ceramics, metals, biomaterials, and polymers, as well as nanotechnology’s application in drug delivery systems, bioimplants, and field-emission displays. The Nanomaterials Handbook is edited by world-renowned nanomaterials scientist Yury Gogotsi, who has recruited his fellow-pioneers from academia, national laboratories, and industry, to provide coverage of the latest material developments in America, Asia, Europe, and Australia.
Publisher: CRC Press
ISBN: 1420004018
Category : Technology & Engineering
Languages : en
Pages : 801
Book Description
Even before it was identified as a science and given a name, nanotechnology was the province of the most innovative inventors. In medieval times, craftsmen, ingeniously employing nanometer-sized gold particles, created the enchanting red hues found in the gold ruby glass of cathedral windows. Today, nanomaterials are being just as creatively used to improve old products, as well as usher in new ones. From tires to CRTs to sunscreens, nanomaterials are becoming a part of every industry. The Nanomaterials Handbook provides a comprehensive overview of the current state of nanomaterials. Employing terminology familiar to materials scientists and engineers, it provides an introduction that delves into the unique nature of nanomaterials. Looking at the quantum effects that come into play and other characteristics realized at the nano level, it explains how the properties displayed by nanomaterials can differ from those displayed by single crystals and conventional microstructured, monolithic, or composite materials. The introduction is followed by an in-depth investigation of carbon-based nanomaterials, which are as important to nanotechnology as silicon is to electronics. However, it goes beyond the usual discussion of nanotubes and nanofibers to consider graphite whiskers, cones and polyhedral crystals, and nanocrystalline diamonds. It also provides significant new information with regard to nanostructured semiconductors, ceramics, metals, biomaterials, and polymers, as well as nanotechnology’s application in drug delivery systems, bioimplants, and field-emission displays. The Nanomaterials Handbook is edited by world-renowned nanomaterials scientist Yury Gogotsi, who has recruited his fellow-pioneers from academia, national laboratories, and industry, to provide coverage of the latest material developments in America, Asia, Europe, and Australia.
Euro Ceramics VIII
Author: Hasan Mandal
Publisher: Trans Tech Publications Ltd
ISBN: 3035706328
Category : Technology & Engineering
Languages : en
Pages : 2560
Book Description
Proceedings of the 8th Conference and Exhibition of the European Ceramic Society, Istanbul, Turkey, June 29-July 3, 2003
Publisher: Trans Tech Publications Ltd
ISBN: 3035706328
Category : Technology & Engineering
Languages : en
Pages : 2560
Book Description
Proceedings of the 8th Conference and Exhibition of the European Ceramic Society, Istanbul, Turkey, June 29-July 3, 2003
26th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures - B, Volume 23, Issue 4
Author: Hua-Tay Lin
Publisher: John Wiley & Sons
ISBN: 0470295201
Category : Technology & Engineering
Languages : en
Pages : 901
Book Description
This volume is part of the Ceramic Engineering and Science Proceeding (CESP) series. This series contains a collection of papers dealing with issues in both traditional ceramics (i.e., glass, whitewares, refractories, and porcelain enamel) and advanced ceramics. Topics covered in the area of advanced ceramic include bioceramics, nanomaterials, composites, solid oxide fuel cells, mechanical properties and structural design, advanced ceramic coatings, ceramic armor, porous ceramics, and more.
Publisher: John Wiley & Sons
ISBN: 0470295201
Category : Technology & Engineering
Languages : en
Pages : 901
Book Description
This volume is part of the Ceramic Engineering and Science Proceeding (CESP) series. This series contains a collection of papers dealing with issues in both traditional ceramics (i.e., glass, whitewares, refractories, and porcelain enamel) and advanced ceramics. Topics covered in the area of advanced ceramic include bioceramics, nanomaterials, composites, solid oxide fuel cells, mechanical properties and structural design, advanced ceramic coatings, ceramic armor, porous ceramics, and more.
Advanced Ceramic Coatings and Interfaces II, Volume 28, Issue 3
Author: Uwe Schulz
Publisher: John Wiley & Sons
ISBN: 0470196343
Category : Technology & Engineering
Languages : en
Pages : 268
Book Description
Papers from The American Ceramic Society's 31st International Conference on Advanced Ceramics and Composites, held in Daytona Beach, Florida, January 21-26, 2007. Focuses on recent advances in coating development, processing, structural design, microstructure and property characterization, and life prediction.
Publisher: John Wiley & Sons
ISBN: 0470196343
Category : Technology & Engineering
Languages : en
Pages : 268
Book Description
Papers from The American Ceramic Society's 31st International Conference on Advanced Ceramics and Composites, held in Daytona Beach, Florida, January 21-26, 2007. Focuses on recent advances in coating development, processing, structural design, microstructure and property characterization, and life prediction.
Materials Structure & Micromechanics of Fracture IV
Author: Jaroslav Pokluda
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 444
Book Description
This volume contains papers selected from the more than 120 contributions presented during the 4th international conference on Materials Structure & Micromechanics of Fracture (MSMF-4), in Brno, Czech Republic, June 23-25, 2004. The MSMF-4 conference successfully carried on the tradition of previous conferences. Nearly 150 scientists from 21 countries presented a variety of multiscale approaches to the modeling and testing of deformation and fracture processes in engineering materials. In collaboration with the International Advisory Board, the organizers also asked Prof. A. J. McEvily (University of Connecticut, USA), Prof. W. Dietzel (GKSS-Forschungszentrum Geesthacht GmbH, Germany), Prof. G. E. Beltz (University of Santa Barbara, California, USA) and Prof. T. Kitamura (Kyoto University, Japan) to prepare plenary key-note lectures. In addition, other leading scientists were asked to provide key-note lectures for each section. The resultant papers, ordered approximately in a sequence going from atomistic to mezoscopic to macroscopic, are presented in the first section of these proceedings. The contributed papers are similarly ordered in the second section.The main goal of the book was to demonstrate a variety of multiscale approaches, ranging from atomistic to macroscopic levels, and in this it succeeds admirably.
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 444
Book Description
This volume contains papers selected from the more than 120 contributions presented during the 4th international conference on Materials Structure & Micromechanics of Fracture (MSMF-4), in Brno, Czech Republic, June 23-25, 2004. The MSMF-4 conference successfully carried on the tradition of previous conferences. Nearly 150 scientists from 21 countries presented a variety of multiscale approaches to the modeling and testing of deformation and fracture processes in engineering materials. In collaboration with the International Advisory Board, the organizers also asked Prof. A. J. McEvily (University of Connecticut, USA), Prof. W. Dietzel (GKSS-Forschungszentrum Geesthacht GmbH, Germany), Prof. G. E. Beltz (University of Santa Barbara, California, USA) and Prof. T. Kitamura (Kyoto University, Japan) to prepare plenary key-note lectures. In addition, other leading scientists were asked to provide key-note lectures for each section. The resultant papers, ordered approximately in a sequence going from atomistic to mezoscopic to macroscopic, are presented in the first section of these proceedings. The contributed papers are similarly ordered in the second section.The main goal of the book was to demonstrate a variety of multiscale approaches, ranging from atomistic to macroscopic levels, and in this it succeeds admirably.