Stationary Sequences and Random Fields

Stationary Sequences and Random Fields PDF Author: Murray Rosenblatt
Publisher: Springer Science & Business Media
ISBN: 1461251567
Category : Mathematics
Languages : en
Pages : 253

Get Book Here

Book Description
This book has a dual purpose. One of these is to present material which selec tively will be appropriate for a quarter or semester course in time series analysis and which will cover both the finite parameter and spectral approach. The second object is the presentation of topics of current research interest and some open questions. I mention these now. In particular, there is a discussion in Chapter III of the types of limit theorems that will imply asymptotic nor mality for covariance estimates and smoothings of the periodogram. This dis cussion allows one to get results on the asymptotic distribution of finite para meter estimates that are broader than those usually given in the literature in Chapter IV. A derivation of the asymptotic distribution for spectral (second order) estimates is given under an assumption of strong mixing in Chapter V. A discussion of higher order cumulant spectra and their large sample properties under appropriate moment conditions follows in Chapter VI. Probability density, conditional probability density and regression estimates are considered in Chapter VII under conditions of short range dependence. Chapter VIII deals with a number of topics. At first estimates for the structure function of a large class of non-Gaussian linear processes are constructed. One can determine much more about this structure or transfer function in the non-Gaussian case than one can for Gaussian processes. In particular, one can determine almost all the phase information.

Stationary Sequences and Random Fields

Stationary Sequences and Random Fields PDF Author: Murray Rosenblatt
Publisher: Springer Science & Business Media
ISBN: 1461251567
Category : Mathematics
Languages : en
Pages : 253

Get Book Here

Book Description
This book has a dual purpose. One of these is to present material which selec tively will be appropriate for a quarter or semester course in time series analysis and which will cover both the finite parameter and spectral approach. The second object is the presentation of topics of current research interest and some open questions. I mention these now. In particular, there is a discussion in Chapter III of the types of limit theorems that will imply asymptotic nor mality for covariance estimates and smoothings of the periodogram. This dis cussion allows one to get results on the asymptotic distribution of finite para meter estimates that are broader than those usually given in the literature in Chapter IV. A derivation of the asymptotic distribution for spectral (second order) estimates is given under an assumption of strong mixing in Chapter V. A discussion of higher order cumulant spectra and their large sample properties under appropriate moment conditions follows in Chapter VI. Probability density, conditional probability density and regression estimates are considered in Chapter VII under conditions of short range dependence. Chapter VIII deals with a number of topics. At first estimates for the structure function of a large class of non-Gaussian linear processes are constructed. One can determine much more about this structure or transfer function in the non-Gaussian case than one can for Gaussian processes. In particular, one can determine almost all the phase information.

Independent and Stationary Sequences of Random Variables

Independent and Stationary Sequences of Random Variables PDF Author: Ilʹdar Abdulovich Ibragimov
Publisher:
ISBN:
Category : Distribution (Probability theory).
Languages : en
Pages : 456

Get Book Here

Book Description


Limit Theorems for Associated Random Fields and Related Systems

Limit Theorems for Associated Random Fields and Related Systems PDF Author: Aleksandr Vadimovich Bulinskii
Publisher: World Scientific
ISBN: 981270941X
Category : Mathematics
Languages : en
Pages : 447

Get Book Here

Book Description
This volume is devoted to the study of asymptotic properties of wide classes of stochastic systems arising in mathematical statistics, percolation theory, statistical physics and reliability theory. Attention is paid not only to positive and negative associations introduced in the pioneering papers by Harris, Lehmann, Esary, Proschan, Walkup, Fortuin, Kasteleyn and Ginibre, but also to new and more general dependence conditions. Naturally, this scope comprises families of independent real-valued random variables. A variety of important results and examples of Markov processes, random measures, stable distributions, Ising ferromagnets, interacting particle systems, stochastic differential equations, random graphs and other models are provided. For such random systems, it is worthwhile to establish principal limit theorems of the modern probability theory (central limit theorem for random fields, weak and strong invariance principles, functional law of the iterated logarithm etc.) and discuss their applications. There are 434 items in the bibliography. The book is self-contained, provides detailed proofs, for reader's convenience some auxiliary results are included in the Appendix (e.g. the classical Hoeffding lemma, basic electric current theory etc.). Contents: Random Systems with Covariance Inequalities; Moment and Maximal Inequalities; Central Limit Theorem; Almost Sure Convergence; Invariance Principles; Law of the Iterated Logarithm; Statistical Applications; Integral Functionals. Readership: Researchers in modern probability and statistics, graduate students and academic staff of the universities.

Convex Functions and Orlicz Spaces

Convex Functions and Orlicz Spaces PDF Author: Mark Aleksandrovich Krasnoselʹskiĭ
Publisher:
ISBN:
Category : Convex domains
Languages : en
Pages : 224

Get Book Here

Book Description


Iterated Random Functions

Iterated Random Functions PDF Author: Persi Diaconis
Publisher:
ISBN:
Category :
Languages : en
Pages : 38

Get Book Here

Book Description


Decoupling

Decoupling PDF Author: Victor de la Peña
Publisher: Springer Science & Business Media
ISBN: 1461205379
Category : Mathematics
Languages : en
Pages : 405

Get Book Here

Book Description
A friendly and systematic introduction to the theory and applications. The book begins with the sums of independent random variables and vectors, with maximal inequalities and sharp estimates on moments, which are later used to develop and interpret decoupling inequalities. Decoupling is first introduced as it applies to randomly stopped processes and unbiased estimation. The authors then proceed with the theory of decoupling in full generality, paying special attention to comparison and interplay between martingale and decoupling theory, and to applications. These include limit theorems, moment and exponential inequalities for martingales and more general dependence structures, biostatistical implications, and moment convergence in Anscombe's theorem and Wald's equation for U--statistics. Addressed to researchers in probability and statistics and to graduates, the expositon is at the level of a second graduate probability course, with a good portion of the material fit for use in a first year course.

Stochastic Geometry, Spatial Statistics and Random Fields

Stochastic Geometry, Spatial Statistics and Random Fields PDF Author: Evgeny Spodarev
Publisher: Springer
ISBN: 3642333052
Category : Mathematics
Languages : en
Pages : 470

Get Book Here

Book Description
This volume provides a modern introduction to stochastic geometry, random fields and spatial statistics at a (post)graduate level. It is focused on asymptotic methods in geometric probability including weak and strong limit theorems for random spatial structures (point processes, sets, graphs, fields) with applications to statistics. Written as a contributed volume of lecture notes, it will be useful not only for students but also for lecturers and researchers interested in geometric probability and related subjects.

Martingale Limit Theory and Its Application

Martingale Limit Theory and Its Application PDF Author: P. Hall
Publisher: Academic Press
ISBN: 1483263223
Category : Mathematics
Languages : en
Pages : 321

Get Book Here

Book Description
Martingale Limit Theory and Its Application discusses the asymptotic properties of martingales, particularly as regards key prototype of probabilistic behavior that has wide applications. The book explains the thesis that martingale theory is central to probability theory, and also examines the relationships between martingales and processes embeddable in or approximated by Brownian motion. The text reviews the martingale convergence theorem, the classical limit theory and analogs, and the martingale limit theorems viewed as the rate of convergence results in the martingale convergence theorem. The book explains the square function inequalities, weak law of large numbers, as well as the strong law of large numbers. The text discusses the reverse martingales, martingale tail sums, the invariance principles in the central limit theorem, and also the law of the iterated logarithm. The book investigates the limit theory for stationary processes via corresponding results for approximating martingales and the estimation of parameters from stochastic processes. The text can be profitably used as a reference for mathematicians, advanced students, and professors of higher mathematics or statistics.

High Dimensional Probability IX

High Dimensional Probability IX PDF Author: Radosław Adamczak
Publisher: Springer Nature
ISBN: 3031269799
Category : Mathematics
Languages : en
Pages : 445

Get Book Here

Book Description
This volume collects selected papers from the Ninth High Dimensional Probability Conference, held virtually from June 15-19, 2020. These papers cover a wide range of topics and demonstrate how high-dimensional probability remains an active area of research with applications across many mathematical disciplines. Chapters are organized around four general topics: inequalities and convexity; limit theorems; stochastic processes; and high-dimensional statistics. High Dimensional Probability IX will be a valuable resource for researchers in this area.

Information Theory and the Central Limit Theorem

Information Theory and the Central Limit Theorem PDF Author: Oliver Thomas Johnson
Publisher: World Scientific
ISBN: 1860944736
Category : Mathematics
Languages : en
Pages : 224

Get Book Here

Book Description
This book provides a comprehensive description of a new method of proving the central limit theorem, through the use of apparently unrelated results from information theory. It gives a basic introduction to the concepts of entropy and Fisher information, and collects together standard results concerning their behaviour. It brings together results from a number of research papers as well as unpublished material, showing how the techniques can give a unified view of limit theorems.