Author: Adam Bobrowski
Publisher: Cambridge University Press
ISBN: 9780521831666
Category : Mathematics
Languages : en
Pages : 416
Book Description
This text presents selected areas of functional analysis that can facilitate an understanding of ideas in probability and stochastic processes. Topics covered include basic Hilbert and Banach spaces, weak topologies and Banach algebras, and the theory ofsemigroups of bounded linear operators.
Functional Analysis for Probability and Stochastic Processes
Author: Adam Bobrowski
Publisher: Cambridge University Press
ISBN: 9780521831666
Category : Mathematics
Languages : en
Pages : 416
Book Description
This text presents selected areas of functional analysis that can facilitate an understanding of ideas in probability and stochastic processes. Topics covered include basic Hilbert and Banach spaces, weak topologies and Banach algebras, and the theory ofsemigroups of bounded linear operators.
Publisher: Cambridge University Press
ISBN: 9780521831666
Category : Mathematics
Languages : en
Pages : 416
Book Description
This text presents selected areas of functional analysis that can facilitate an understanding of ideas in probability and stochastic processes. Topics covered include basic Hilbert and Banach spaces, weak topologies and Banach algebras, and the theory ofsemigroups of bounded linear operators.
Functional Analysis for Probability and Stochastic Processes
Author: Adam Bobrowski
Publisher: Cambridge University Press
ISBN: 1139443887
Category : Mathematics
Languages : en
Pages : 407
Book Description
This text is designed both for students of probability and stochastic processes, and for students of functional analysis. For the reader not familiar with functional analysis a detailed introduction to necessary notions and facts is provided. However, this is not a straight textbook in functional analysis; rather, it presents some chosen parts of functional analysis that can help understand ideas from probability and stochastic processes. The subjects range from basic Hilbert and Banach spaces, through weak topologies and Banach algebras, to the theory of semigroups of bounded linear operators. Numerous standard and non-standard examples and exercises make the book suitable as a course textbook or for self-study.
Publisher: Cambridge University Press
ISBN: 1139443887
Category : Mathematics
Languages : en
Pages : 407
Book Description
This text is designed both for students of probability and stochastic processes, and for students of functional analysis. For the reader not familiar with functional analysis a detailed introduction to necessary notions and facts is provided. However, this is not a straight textbook in functional analysis; rather, it presents some chosen parts of functional analysis that can help understand ideas from probability and stochastic processes. The subjects range from basic Hilbert and Banach spaces, through weak topologies and Banach algebras, to the theory of semigroups of bounded linear operators. Numerous standard and non-standard examples and exercises make the book suitable as a course textbook or for self-study.
Stochastic Processes and Functional Analysis
Author: Alan C. Krinik
Publisher: CRC Press
ISBN: 9780203913574
Category : Mathematics
Languages : en
Pages : 526
Book Description
This extraordinary compilation is an expansion of the recent American Mathematical Society Special Session celebrating M. M. Rao's distinguished career and includes most of the presented papers as well as ancillary contributions from session invitees. This book shows the effectiveness of abstract analysis for solving fundamental problems of stochas
Publisher: CRC Press
ISBN: 9780203913574
Category : Mathematics
Languages : en
Pages : 526
Book Description
This extraordinary compilation is an expansion of the recent American Mathematical Society Special Session celebrating M. M. Rao's distinguished career and includes most of the presented papers as well as ancillary contributions from session invitees. This book shows the effectiveness of abstract analysis for solving fundamental problems of stochas
Probability Theory and Stochastic Processes with Applications (Second Edition)
Author: Oliver Knill
Publisher: World Scientific Publishing Company
ISBN: 9789813109490
Category : Mathematics
Languages : en
Pages : 500
Book Description
This second edition has a unique approach that provides a broad and wide introduction into the fascinating area of probability theory. It starts on a fast track with the treatment of probability theory and stochastic processes by providing short proofs. The last chapter is unique as it features a wide range of applications in other fields like Vlasov dynamics of fluids, statistics of circular data, singular continuous random variables, Diophantine equations, percolation theory, random Schrödinger operators, spectral graph theory, integral geometry, computer vision, and processes with high risk.Many of these areas are under active investigation and this volume is highly suited for ambitious undergraduate students, graduate students and researchers.
Publisher: World Scientific Publishing Company
ISBN: 9789813109490
Category : Mathematics
Languages : en
Pages : 500
Book Description
This second edition has a unique approach that provides a broad and wide introduction into the fascinating area of probability theory. It starts on a fast track with the treatment of probability theory and stochastic processes by providing short proofs. The last chapter is unique as it features a wide range of applications in other fields like Vlasov dynamics of fluids, statistics of circular data, singular continuous random variables, Diophantine equations, percolation theory, random Schrödinger operators, spectral graph theory, integral geometry, computer vision, and processes with high risk.Many of these areas are under active investigation and this volume is highly suited for ambitious undergraduate students, graduate students and researchers.
An Introduction to Probability and Stochastic Processes
Author: James L. Melsa
Publisher: Courier Corporation
ISBN: 0486490998
Category : Mathematics
Languages : en
Pages : 420
Book Description
Detailed coverage of probability theory, random variables and their functions, stochastic processes, linear system response to stochastic processes, Gaussian and Markov processes, and stochastic differential equations. 1973 edition.
Publisher: Courier Corporation
ISBN: 0486490998
Category : Mathematics
Languages : en
Pages : 420
Book Description
Detailed coverage of probability theory, random variables and their functions, stochastic processes, linear system response to stochastic processes, Gaussian and Markov processes, and stochastic differential equations. 1973 edition.
Real Analysis and Probability
Author: R. M. Dudley
Publisher: Cambridge University Press
ISBN: 9780521007542
Category : Mathematics
Languages : en
Pages : 570
Book Description
This classic text offers a clear exposition of modern probability theory.
Publisher: Cambridge University Press
ISBN: 9780521007542
Category : Mathematics
Languages : en
Pages : 570
Book Description
This classic text offers a clear exposition of modern probability theory.
Asymptotic Analysis for Functional Stochastic Differential Equations
Author: Jianhai Bao
Publisher: Springer
ISBN: 3319469797
Category : Mathematics
Languages : en
Pages : 159
Book Description
This brief treats dynamical systems that involve delays and random disturbances. The study is motivated by a wide variety of systems in real life in which random noise has to be taken into consideration and the effect of delays cannot be ignored. Concentrating on such systems that are described by functional stochastic differential equations, this work focuses on the study of large time behavior, in particular, ergodicity.This brief is written for probabilists, applied mathematicians, engineers, and scientists who need to use delay systems and functional stochastic differential equations in their work. Selected topics from the brief can also be used in a graduate level topics course in probability and stochastic processes.
Publisher: Springer
ISBN: 3319469797
Category : Mathematics
Languages : en
Pages : 159
Book Description
This brief treats dynamical systems that involve delays and random disturbances. The study is motivated by a wide variety of systems in real life in which random noise has to be taken into consideration and the effect of delays cannot be ignored. Concentrating on such systems that are described by functional stochastic differential equations, this work focuses on the study of large time behavior, in particular, ergodicity.This brief is written for probabilists, applied mathematicians, engineers, and scientists who need to use delay systems and functional stochastic differential equations in their work. Selected topics from the brief can also be used in a graduate level topics course in probability and stochastic processes.
Functional Analysis and Infinite-Dimensional Geometry
Author: Marian Fabian
Publisher: Springer Science & Business Media
ISBN: 1475734808
Category : Mathematics
Languages : en
Pages : 455
Book Description
This book introduces the basic principles of functional analysis and areas of Banach space theory that are close to nonlinear analysis and topology. The text can be used in graduate courses or for independent study. It includes a large number of exercises of different levels of difficulty, accompanied by hints.
Publisher: Springer Science & Business Media
ISBN: 1475734808
Category : Mathematics
Languages : en
Pages : 455
Book Description
This book introduces the basic principles of functional analysis and areas of Banach space theory that are close to nonlinear analysis and topology. The text can be used in graduate courses or for independent study. It includes a large number of exercises of different levels of difficulty, accompanied by hints.
An Introduction to Probability and Stochastic Processes
Author: Marc A. Berger
Publisher: Springer Science & Business Media
ISBN: 1461227267
Category : Mathematics
Languages : en
Pages : 228
Book Description
These notes were written as a result of my having taught a "nonmeasure theoretic" course in probability and stochastic processes a few times at the Weizmann Institute in Israel. I have tried to follow two principles. The first is to prove things "probabilistically" whenever possible without recourse to other branches of mathematics and in a notation that is as "probabilistic" as possible. Thus, for example, the asymptotics of pn for large n, where P is a stochastic matrix, is developed in Section V by using passage probabilities and hitting times rather than, say, pulling in Perron Frobenius theory or spectral analysis. Similarly in Section II the joint normal distribution is studied through conditional expectation rather than quadratic forms. The second principle I have tried to follow is to only prove results in their simple forms and to try to eliminate any minor technical com putations from proofs, so as to expose the most important steps. Steps in proofs or derivations that involve algebra or basic calculus are not shown; only steps involving, say, the use of independence or a dominated convergence argument or an assumptjon in a theorem are displayed. For example, in proving inversion formulas for characteristic functions I omit steps involving evaluation of basic trigonometric integrals and display details only where use is made of Fubini's Theorem or the Dominated Convergence Theorem.
Publisher: Springer Science & Business Media
ISBN: 1461227267
Category : Mathematics
Languages : en
Pages : 228
Book Description
These notes were written as a result of my having taught a "nonmeasure theoretic" course in probability and stochastic processes a few times at the Weizmann Institute in Israel. I have tried to follow two principles. The first is to prove things "probabilistically" whenever possible without recourse to other branches of mathematics and in a notation that is as "probabilistic" as possible. Thus, for example, the asymptotics of pn for large n, where P is a stochastic matrix, is developed in Section V by using passage probabilities and hitting times rather than, say, pulling in Perron Frobenius theory or spectral analysis. Similarly in Section II the joint normal distribution is studied through conditional expectation rather than quadratic forms. The second principle I have tried to follow is to only prove results in their simple forms and to try to eliminate any minor technical com putations from proofs, so as to expose the most important steps. Steps in proofs or derivations that involve algebra or basic calculus are not shown; only steps involving, say, the use of independence or a dominated convergence argument or an assumptjon in a theorem are displayed. For example, in proving inversion formulas for characteristic functions I omit steps involving evaluation of basic trigonometric integrals and display details only where use is made of Fubini's Theorem or the Dominated Convergence Theorem.
Fundamentals of Probability and Stochastic Processes with Applications to Communications
Author: Kun Il Park
Publisher: Springer
ISBN: 3319680757
Category : Technology & Engineering
Languages : en
Pages : 277
Book Description
This book provides engineers with focused treatment of the mathematics needed to understand probability, random variables, and stochastic processes, which are essential mathematical disciplines used in communications engineering. The author explains the basic concepts of these topics as plainly as possible so that people with no in-depth knowledge of these mathematical topics can better appreciate their applications in real problems. Applications examples are drawn from various areas of communications. If a reader is interested in understanding probability and stochastic processes that are specifically important for communications networks and systems, this book serves his/her need.
Publisher: Springer
ISBN: 3319680757
Category : Technology & Engineering
Languages : en
Pages : 277
Book Description
This book provides engineers with focused treatment of the mathematics needed to understand probability, random variables, and stochastic processes, which are essential mathematical disciplines used in communications engineering. The author explains the basic concepts of these topics as plainly as possible so that people with no in-depth knowledge of these mathematical topics can better appreciate their applications in real problems. Applications examples are drawn from various areas of communications. If a reader is interested in understanding probability and stochastic processes that are specifically important for communications networks and systems, this book serves his/her need.