Author: Ying Deng
Publisher: Woodhead Publishing
ISBN: 0081009801
Category : Technology & Engineering
Languages : en
Pages : 484
Book Description
In order to grow replacement tissues, 3D scaffolds are widely used as a template for tissue engineering and regeneration. These scaffolds, which are typically 'seeded' with cells, support the growth of new tissues. However, in order to achieve successful tissue growth, the scaffold must meet specific requirements and are often 'functionalized' to accentuate particular properties. Functional 3D tissue engineering scaffolds: materials, technologies, and applications, is a comprehensive review of functional 3D scaffolds, providing information on the fundamentals, technologies, and applications. Part 1 focuses on the fundamentals of 3D tissue scaffolds, examining information on materials, properties, and trends. Part 2 discusses a wide range of conventional technologies for engineering functional 3D scaffolds, leading the way to a discussion on CAD and advanced technologies for functional 3D scaffold engineering. Chapters in part 3 study methods for functionalizing scaffolds to support a variety of in vivo functions whilst the final set of chapters provides an important review of the most significant applications of functional 3D scaffolds within tissue engineering. This book is a valuable resource for biomaterial scientists and biomedical engineers in academia and industry, with interests in tissue engineering and regenerative medicine. - Provides a self-contained work for the field of biomaterials and tissue engineering - Discusses all the requirements a scaffold must meet and a wide range of strategies to create them - Highlights significant and successful applications of functional 3D scaffolds
Functional 3D Tissue Engineering Scaffolds
Author: Ying Deng
Publisher: Woodhead Publishing
ISBN: 0081009801
Category : Technology & Engineering
Languages : en
Pages : 484
Book Description
In order to grow replacement tissues, 3D scaffolds are widely used as a template for tissue engineering and regeneration. These scaffolds, which are typically 'seeded' with cells, support the growth of new tissues. However, in order to achieve successful tissue growth, the scaffold must meet specific requirements and are often 'functionalized' to accentuate particular properties. Functional 3D tissue engineering scaffolds: materials, technologies, and applications, is a comprehensive review of functional 3D scaffolds, providing information on the fundamentals, technologies, and applications. Part 1 focuses on the fundamentals of 3D tissue scaffolds, examining information on materials, properties, and trends. Part 2 discusses a wide range of conventional technologies for engineering functional 3D scaffolds, leading the way to a discussion on CAD and advanced technologies for functional 3D scaffold engineering. Chapters in part 3 study methods for functionalizing scaffolds to support a variety of in vivo functions whilst the final set of chapters provides an important review of the most significant applications of functional 3D scaffolds within tissue engineering. This book is a valuable resource for biomaterial scientists and biomedical engineers in academia and industry, with interests in tissue engineering and regenerative medicine. - Provides a self-contained work for the field of biomaterials and tissue engineering - Discusses all the requirements a scaffold must meet and a wide range of strategies to create them - Highlights significant and successful applications of functional 3D scaffolds
Publisher: Woodhead Publishing
ISBN: 0081009801
Category : Technology & Engineering
Languages : en
Pages : 484
Book Description
In order to grow replacement tissues, 3D scaffolds are widely used as a template for tissue engineering and regeneration. These scaffolds, which are typically 'seeded' with cells, support the growth of new tissues. However, in order to achieve successful tissue growth, the scaffold must meet specific requirements and are often 'functionalized' to accentuate particular properties. Functional 3D tissue engineering scaffolds: materials, technologies, and applications, is a comprehensive review of functional 3D scaffolds, providing information on the fundamentals, technologies, and applications. Part 1 focuses on the fundamentals of 3D tissue scaffolds, examining information on materials, properties, and trends. Part 2 discusses a wide range of conventional technologies for engineering functional 3D scaffolds, leading the way to a discussion on CAD and advanced technologies for functional 3D scaffold engineering. Chapters in part 3 study methods for functionalizing scaffolds to support a variety of in vivo functions whilst the final set of chapters provides an important review of the most significant applications of functional 3D scaffolds within tissue engineering. This book is a valuable resource for biomaterial scientists and biomedical engineers in academia and industry, with interests in tissue engineering and regenerative medicine. - Provides a self-contained work for the field of biomaterials and tissue engineering - Discusses all the requirements a scaffold must meet and a wide range of strategies to create them - Highlights significant and successful applications of functional 3D scaffolds
Bone Tissue Engineering
Author: Jeffrey O. Hollinger
Publisher: CRC Press
ISBN: 1135501912
Category : Medical
Languages : en
Pages : 462
Book Description
Focusing on bone biology, Bone Tissue Engineering integrates basic sciences with tissue engineering. It includes contributions from world-renowned researchers and clinicians who discuss key topics such as different models and approaches to bone tissue engineering, as well as exciting clinical applications for patients. Divided into four sections, t
Publisher: CRC Press
ISBN: 1135501912
Category : Medical
Languages : en
Pages : 462
Book Description
Focusing on bone biology, Bone Tissue Engineering integrates basic sciences with tissue engineering. It includes contributions from world-renowned researchers and clinicians who discuss key topics such as different models and approaches to bone tissue engineering, as well as exciting clinical applications for patients. Divided into four sections, t
Handbook of Intelligent Scaffolds for Tissue Engineering and Regenerative Medicine
Author: Gilson Khang
Publisher: CRC Press
ISBN: 9814745138
Category : Medical
Languages : en
Pages : 1480
Book Description
Millions of patients suffer from end-stage organ failure or tissue loss annually, and the only solution might be organ and/or tissue transplantation. To avoid poor biocompatibility–related problems and donor organ shortage, however, around 20 years ago a new, hybridized method combining cells and biomaterials was introduced as an alternative to whole-organ and tissue transplantation for diseased, failing, or malfunctioning organs—regenerative medicine and tissue engineering. This handbook focuses on all aspects of intelligent scaffolds, from basic science to industry to clinical applications. Its 10 parts, illustrated throughout with excellent figures, cover stem cell engineering research, drug delivery systems, nanomaterials and nanodevices, and novel and natural biomaterials. The book can be used by advanced undergraduate- and graduate-level students of stem cell and tissue engineering and researchers in macromolecular science, ceramics, metals for biomaterials, nanotechnology, chemistry, biology, and medicine, especially those interested in tissue engineering, stem cell engineering, and regenerative medicine.
Publisher: CRC Press
ISBN: 9814745138
Category : Medical
Languages : en
Pages : 1480
Book Description
Millions of patients suffer from end-stage organ failure or tissue loss annually, and the only solution might be organ and/or tissue transplantation. To avoid poor biocompatibility–related problems and donor organ shortage, however, around 20 years ago a new, hybridized method combining cells and biomaterials was introduced as an alternative to whole-organ and tissue transplantation for diseased, failing, or malfunctioning organs—regenerative medicine and tissue engineering. This handbook focuses on all aspects of intelligent scaffolds, from basic science to industry to clinical applications. Its 10 parts, illustrated throughout with excellent figures, cover stem cell engineering research, drug delivery systems, nanomaterials and nanodevices, and novel and natural biomaterials. The book can be used by advanced undergraduate- and graduate-level students of stem cell and tissue engineering and researchers in macromolecular science, ceramics, metals for biomaterials, nanotechnology, chemistry, biology, and medicine, especially those interested in tissue engineering, stem cell engineering, and regenerative medicine.
3D Printing and Biofabrication
Author: Aleksandr Ovsianikov
Publisher: Springer
ISBN: 9783319454436
Category : Science
Languages : en
Pages : 0
Book Description
This volume provides an in-depth introduction to 3D printing and biofabrication and covers the recent advances in additive manufacturing for tissue engineering. The book is divided into two parts, the first part on 3D printing discusses conventional approaches in additive manufacturing aimed at fabrication of structures, which are seeded with cells in a subsequent step. The second part on biofabrication presents processes which integrate living cells into the fabrication process.
Publisher: Springer
ISBN: 9783319454436
Category : Science
Languages : en
Pages : 0
Book Description
This volume provides an in-depth introduction to 3D printing and biofabrication and covers the recent advances in additive manufacturing for tissue engineering. The book is divided into two parts, the first part on 3D printing discusses conventional approaches in additive manufacturing aimed at fabrication of structures, which are seeded with cells in a subsequent step. The second part on biofabrication presents processes which integrate living cells into the fabrication process.
Biomaterials for Artificial Organs
Author: Michael Lysaght
Publisher: Elsevier
ISBN: 0857090844
Category : Technology & Engineering
Languages : en
Pages : 313
Book Description
The worldwide demand for organ transplants far exceeds available donor organs. Consequently some patients die whilst waiting for a transplant. Synthetic alternatives are therefore imperative to improve the quality of, and in some cases, save people's lives. Advances in biomaterials have generated a range of materials and devices for use either outside the body or through implantation to replace or assist functions which may have been lost through disease or injury. Biomaterials for artificial organs reviews the latest developments in biomaterials and investigates how they can be used to improve the quality and efficiency of artificial organs.Part one discusses commodity biomaterials including membranes for oxygenators and plasmafilters, titanium and cobalt chromium alloys for hips and knees, polymeric joint-bearing surfaces for total joint replacements, biomaterials for pacemakers, defibrillators and neurostimulators and mechanical and bioprosthetic heart valves. Part two goes on to investigate advanced and next generation biomaterials including small intestinal submucosa and other decullarized matrix biomaterials for tissue repair, new ceramics and composites for joint replacement surgery, biomaterials for improving the blood and tissue compatibility of total artificial hearts (TAH) and ventricular assist devices (VAD), nanostructured biomaterials for artificial tissues and organs and matrices for tissue engineering and regenerative medicine.With its distinguished editors and international team of contributors Biomaterials for artificial organs is an invaluable resource to researchers, scientists and academics concerned with the advancement of artificial organs. - Reviews the latest developments in biomaterials and investigates how they can be used to improve the quality and efficiency of artificial organs - Discusses commodity biomaterials including membranes for oxygenators and cobalt chromium alloys for hips and knees and polymeric joint-bearing surfaces for total joint replacements - Further biomaterials utilised in pacemakers, defibrillators, neurostimulators and mechanical and bioprosthetic heart valve are also explored
Publisher: Elsevier
ISBN: 0857090844
Category : Technology & Engineering
Languages : en
Pages : 313
Book Description
The worldwide demand for organ transplants far exceeds available donor organs. Consequently some patients die whilst waiting for a transplant. Synthetic alternatives are therefore imperative to improve the quality of, and in some cases, save people's lives. Advances in biomaterials have generated a range of materials and devices for use either outside the body or through implantation to replace or assist functions which may have been lost through disease or injury. Biomaterials for artificial organs reviews the latest developments in biomaterials and investigates how they can be used to improve the quality and efficiency of artificial organs.Part one discusses commodity biomaterials including membranes for oxygenators and plasmafilters, titanium and cobalt chromium alloys for hips and knees, polymeric joint-bearing surfaces for total joint replacements, biomaterials for pacemakers, defibrillators and neurostimulators and mechanical and bioprosthetic heart valves. Part two goes on to investigate advanced and next generation biomaterials including small intestinal submucosa and other decullarized matrix biomaterials for tissue repair, new ceramics and composites for joint replacement surgery, biomaterials for improving the blood and tissue compatibility of total artificial hearts (TAH) and ventricular assist devices (VAD), nanostructured biomaterials for artificial tissues and organs and matrices for tissue engineering and regenerative medicine.With its distinguished editors and international team of contributors Biomaterials for artificial organs is an invaluable resource to researchers, scientists and academics concerned with the advancement of artificial organs. - Reviews the latest developments in biomaterials and investigates how they can be used to improve the quality and efficiency of artificial organs - Discusses commodity biomaterials including membranes for oxygenators and cobalt chromium alloys for hips and knees and polymeric joint-bearing surfaces for total joint replacements - Further biomaterials utilised in pacemakers, defibrillators, neurostimulators and mechanical and bioprosthetic heart valve are also explored
Functional Chitosan
Author: Sougata Jana
Publisher: Springer Nature
ISBN: 9811502633
Category : Medical
Languages : en
Pages : 494
Book Description
Thanks to their unique properties, chitosan and chitosan-based materials have numerous applications in the field of biomedicine, especially in drug delivery. This book examines biomedical applications of functional chitosan, exploring the various functions and applications in the development of chitosan-based biomaterials. It also describes the chemical structure of chitosan and discusses the relationship between their structure and functions, providing a theoretical basis for the design of biomaterials. Lastly, it reviews chemically modified and composite materials of chitin and chitosan derivatives for biomedical applications, such as tissue engineering, nanomedicine, drug delivery, and gene delivery.
Publisher: Springer Nature
ISBN: 9811502633
Category : Medical
Languages : en
Pages : 494
Book Description
Thanks to their unique properties, chitosan and chitosan-based materials have numerous applications in the field of biomedicine, especially in drug delivery. This book examines biomedical applications of functional chitosan, exploring the various functions and applications in the development of chitosan-based biomaterials. It also describes the chemical structure of chitosan and discusses the relationship between their structure and functions, providing a theoretical basis for the design of biomaterials. Lastly, it reviews chemically modified and composite materials of chitin and chitosan derivatives for biomedical applications, such as tissue engineering, nanomedicine, drug delivery, and gene delivery.
Therapeutic Dressings and Wound Healing Applications
Author: Joshua Boateng
Publisher: John Wiley & Sons
ISBN: 1119433266
Category : Science
Languages : en
Pages : 452
Book Description
The latest research on techniques for effective healing of chronic and difficult to heal wounds The healing of chronic wounds is a global medical concern, specifically for patients suffering from obesity and type II diabetes. Therapeutic Dressing and Wound Healing Applications is an essential text for research labs, industry professionals, and general clinical practitioners that want to make the shift towards advanced therapeutic dressing and groundbreaking wound application for better healing. This book takes a clinical and scientific approach to wound healing, and includes recent case studies to highlight key points and areas of improvement. It is divided into two key sections that include insight into the biochemical basis of wounds, as well as techniques and recent advancements. Chapters include information on: ● Debridement and disinfection properties of wound dressing ● Biofilms, silver nanoparticles, and honey dressings ● Clinical perspectives for treating diabetic wounds ● Treating mixed infections ● Wound healing and tissue regeneration treatments ● Gene based therapy, 3D bioprinting and freeze-dried wafers Anyone looking to update and improve the treatment of chronic wounds for patients will find the latest pertinent information in Therapeutic Dressing and Wound Healing Applications.
Publisher: John Wiley & Sons
ISBN: 1119433266
Category : Science
Languages : en
Pages : 452
Book Description
The latest research on techniques for effective healing of chronic and difficult to heal wounds The healing of chronic wounds is a global medical concern, specifically for patients suffering from obesity and type II diabetes. Therapeutic Dressing and Wound Healing Applications is an essential text for research labs, industry professionals, and general clinical practitioners that want to make the shift towards advanced therapeutic dressing and groundbreaking wound application for better healing. This book takes a clinical and scientific approach to wound healing, and includes recent case studies to highlight key points and areas of improvement. It is divided into two key sections that include insight into the biochemical basis of wounds, as well as techniques and recent advancements. Chapters include information on: ● Debridement and disinfection properties of wound dressing ● Biofilms, silver nanoparticles, and honey dressings ● Clinical perspectives for treating diabetic wounds ● Treating mixed infections ● Wound healing and tissue regeneration treatments ● Gene based therapy, 3D bioprinting and freeze-dried wafers Anyone looking to update and improve the treatment of chronic wounds for patients will find the latest pertinent information in Therapeutic Dressing and Wound Healing Applications.
Advanced 3D-Printed Systems and Nanosystems for Drug Delivery and Tissue Engineering
Author: Lisa C. du Toit
Publisher: Elsevier
ISBN: 0128184728
Category : Technology & Engineering
Languages : en
Pages : 318
Book Description
Advanced 3D-Printed Systems and Nanosystems for Drug Delivery and Tissue Engineering explores the intricacies of nanostructures and 3D printed systems in terms of their design as drug delivery or tissue engineering devices, their further evaluations and diverse applications. The book highlights the most recent advances in both nanosystems and 3D-printed systems for both drug delivery and tissue engineering applications. It discusses the convergence of biofabrication with nanotechnology, constructing a directional customizable biomaterial arrangement for promoting tissue regeneration, combined with the potential for controlled bioactive delivery. These discussions provide a new viewpoint for both biomaterials scientists and pharmaceutical scientists. - Shows how nanotechnology and 3D printing are being used to create systems which are intelligent, biomimetic and customizable to the patient - Explores the current generation of nanostructured 3D printed medical devices - Assesses the major challenges of using 3D printed nanosystems for the manufacture of new pharmaceuticals
Publisher: Elsevier
ISBN: 0128184728
Category : Technology & Engineering
Languages : en
Pages : 318
Book Description
Advanced 3D-Printed Systems and Nanosystems for Drug Delivery and Tissue Engineering explores the intricacies of nanostructures and 3D printed systems in terms of their design as drug delivery or tissue engineering devices, their further evaluations and diverse applications. The book highlights the most recent advances in both nanosystems and 3D-printed systems for both drug delivery and tissue engineering applications. It discusses the convergence of biofabrication with nanotechnology, constructing a directional customizable biomaterial arrangement for promoting tissue regeneration, combined with the potential for controlled bioactive delivery. These discussions provide a new viewpoint for both biomaterials scientists and pharmaceutical scientists. - Shows how nanotechnology and 3D printing are being used to create systems which are intelligent, biomimetic and customizable to the patient - Explores the current generation of nanostructured 3D printed medical devices - Assesses the major challenges of using 3D printed nanosystems for the manufacture of new pharmaceuticals
Design, Development, and Optimization of Bio-Mechatronic Engineering Products
Author: Kumar, Kaushik
Publisher: IGI Global
ISBN: 1522582363
Category : Technology & Engineering
Languages : en
Pages : 332
Book Description
Biomechanical engineering is involved with creating and producing a variety of products in everyday use, from environmentally safe plastics to various foods, fabrics, and medicines. A combination of engineering and biology, it is a fast-growing field with many new and exciting opportunities in genetic engineering and biotechnology. However, research surrounding biomechanical applications is scattered and often restricted, leading to the need for a comprehensive publication of the recent advances and developments in this emerging field. Design, Development, and Optimization of Bio-Mechatronic Engineering Products provides pivotal research on the application of combining mechanical engineering with human biological systems in order to develop bio-mechatronic products like pacemakers, artificial kidney replacements, artificial hearts, and new joints or limbs to better and more accurately monitor and advance human health. While highlighting topics such as orthotic devices, inter-electrode gap, and biomaterial applications, this publication explores producing artificial material to work in sync with the human body. This book is ideally designed for engineers, health professionals, technology developers, researchers, academicians, and students.
Publisher: IGI Global
ISBN: 1522582363
Category : Technology & Engineering
Languages : en
Pages : 332
Book Description
Biomechanical engineering is involved with creating and producing a variety of products in everyday use, from environmentally safe plastics to various foods, fabrics, and medicines. A combination of engineering and biology, it is a fast-growing field with many new and exciting opportunities in genetic engineering and biotechnology. However, research surrounding biomechanical applications is scattered and often restricted, leading to the need for a comprehensive publication of the recent advances and developments in this emerging field. Design, Development, and Optimization of Bio-Mechatronic Engineering Products provides pivotal research on the application of combining mechanical engineering with human biological systems in order to develop bio-mechatronic products like pacemakers, artificial kidney replacements, artificial hearts, and new joints or limbs to better and more accurately monitor and advance human health. While highlighting topics such as orthotic devices, inter-electrode gap, and biomaterial applications, this publication explores producing artificial material to work in sync with the human body. This book is ideally designed for engineers, health professionals, technology developers, researchers, academicians, and students.
Computer-Aided Tissue Engineering
Author: Michael A.K. Liebschner
Publisher: Humana Press
ISBN: 9781617797637
Category : Science
Languages : en
Pages : 0
Book Description
The recent revolution in the biological sciences and bioengineering, along with the advancements of modern design and manufacturing, biomaterials, biology, and biomedicine, have brought about the new field of computer-aided tissue engineering. Advances in this fascinating new area of study encompass broad applications in large-scale tissue engineering fabrication, artificial organs, orthopaedic implants, and biological chips. Computer-Aided Tissue Engineering highlights the interdisciplinary nature of this topic and reviews the current state of computer-aided three-dimensional tissue modeling, tissue classification, and tissue fabrication and implantation. Particular focus is placed on rapid prototyping and direct digital fabrication for cell and organs, construction of tissue analogs, and precursors to 3D tissue scaffolds. Written for the highly successful Methods in Molecular BiologyTM series, this work provides the kind of detailed description and implementation advice that is crucial for getting optimal results. Current and practical, Computer-Aided Tissue Engineering provides a coherent framework for researchers interested in these vital technologies and for clinicians who plan to implement them.
Publisher: Humana Press
ISBN: 9781617797637
Category : Science
Languages : en
Pages : 0
Book Description
The recent revolution in the biological sciences and bioengineering, along with the advancements of modern design and manufacturing, biomaterials, biology, and biomedicine, have brought about the new field of computer-aided tissue engineering. Advances in this fascinating new area of study encompass broad applications in large-scale tissue engineering fabrication, artificial organs, orthopaedic implants, and biological chips. Computer-Aided Tissue Engineering highlights the interdisciplinary nature of this topic and reviews the current state of computer-aided three-dimensional tissue modeling, tissue classification, and tissue fabrication and implantation. Particular focus is placed on rapid prototyping and direct digital fabrication for cell and organs, construction of tissue analogs, and precursors to 3D tissue scaffolds. Written for the highly successful Methods in Molecular BiologyTM series, this work provides the kind of detailed description and implementation advice that is crucial for getting optimal results. Current and practical, Computer-Aided Tissue Engineering provides a coherent framework for researchers interested in these vital technologies and for clinicians who plan to implement them.