Free-Surface Flow

Free-Surface Flow PDF Author: Nikolaos D. Katopodes
Publisher: Butterworth-Heinemann
ISBN: 0128162511
Category : Technology & Engineering
Languages : en
Pages : 1022

Get Book Here

Book Description
Free Surface Flow: Environmental Fluid Mechanics introduces a wide range of environmental fluid flows, such as water waves, land runoff, channel flow, and effluent discharge. The book provides systematic analysis tools and basic skills for study fluid mechanics in natural and constructed environmental flows. As the prediction of changes in free surfaces in rivers, lakes, estuaries and in the ocean directly affects the design of structures that control surface waters, and because planning for the allocation of fresh-water resources in a sustainable manner is an essential goal, this book provides the necessary background and research. - Helps users determine the transfer of solute mass through the air-water interface - Presents tactics on the impact of free shear flow in the environment and how to quantify mixing mechanisms in turbulent jets and wakes - Gives users tactics to predict the fate and transport of contaminants in stratified lakes and estuaries

Free-Surface Flow

Free-Surface Flow PDF Author: Nikolaos D. Katopodes
Publisher: Butterworth-Heinemann
ISBN: 0128162511
Category : Technology & Engineering
Languages : en
Pages : 1022

Get Book Here

Book Description
Free Surface Flow: Environmental Fluid Mechanics introduces a wide range of environmental fluid flows, such as water waves, land runoff, channel flow, and effluent discharge. The book provides systematic analysis tools and basic skills for study fluid mechanics in natural and constructed environmental flows. As the prediction of changes in free surfaces in rivers, lakes, estuaries and in the ocean directly affects the design of structures that control surface waters, and because planning for the allocation of fresh-water resources in a sustainable manner is an essential goal, this book provides the necessary background and research. - Helps users determine the transfer of solute mass through the air-water interface - Presents tactics on the impact of free shear flow in the environment and how to quantify mixing mechanisms in turbulent jets and wakes - Gives users tactics to predict the fate and transport of contaminants in stratified lakes and estuaries

Free-Surface Flow:

Free-Surface Flow: PDF Author: Nikolaos D. Katopodes
Publisher: Butterworth-Heinemann
ISBN: 0128154888
Category : Technology & Engineering
Languages : en
Pages : 850

Get Book Here

Book Description
Free-Surface Flow: Shallow-Water Dynamics presents a novel approach to this phenomenon. It bridges the gap between traditional books on open-channel flow and analytical fluid mechanics. Shallow-water theory is established by formal integration of the Navier-Stokes equations, and boundary resistance is developed by a rigorous construction of turbulent flow models for channel flow. In addition, the book presents a comprehensive description of shallow-water waves by mathematical analysis. These methods form the foundation for understanding flood routing, sudden water releases, dam and levee break, sluice gate dynamics and wave-current interaction. - Bridges the gap between traditional books on open-channel flow and wave mechanics - Presents a comprehensive description of shallow-water waves by characteristic and bicharacteristic analysis - Presents techniques for wave control and active flood mitigation

The Structure of Turbulent Shear Flow

The Structure of Turbulent Shear Flow PDF Author: A. A. R. Townsend
Publisher: Cambridge University Press
ISBN: 9780521298193
Category : Mathematics
Languages : en
Pages : 450

Get Book Here

Book Description
Develops a physical theory from the mass of experimental results, with revisions to reflect advances of recent years.

Free-Surface Flow

Free-Surface Flow PDF Author: Nikolaos D. Katopodes
Publisher: Butterworth-Heinemann
ISBN: 0128154861
Category : Technology & Engineering
Languages : en
Pages : 916

Get Book Here

Book Description
Free-Surface Flow: Computational Methods presents a detailed analysis of numerical schemes for shallow-water waves. It includes practical applications for the numerical simulation of flow and transport in rivers and estuaries, the dam-break problem and overland flow. Closure models for turbulence, such as Reynolds-Averaged Navier-Stokes and Large Eddy Simulation are presented, coupling the aforementioned surface tracking techniques with environmental fluid dynamics. While many computer programs can solve the partial differential equations describing the dynamics of fluids, many are not capable of including free surfaces in their simulations. - Provides numerical solutions of the turbulent Navier-Stokes equations in three space dimensions - Includes closure models for turbulence, such as Reynolds-Averaged Navier-Stokes, and Large Eddy Simulation - Practical applications are presented for the numerical simulation of flow and transport in rivers and estuaries, the dam-break problem and overland flow

Turbulence in Open Channel Flows

Turbulence in Open Channel Flows PDF Author: Hiroji Nakagawa
Publisher: Routledge
ISBN: 1351406604
Category : Technology & Engineering
Languages : en
Pages : 246

Get Book Here

Book Description
A review of open channel turbulence, focusing especially on certain features stemming from the presence of the free surface and the bed of a river. Part one presents the statistical theory of turbulence; Part two addresses the coherent structures in open-channel flows and boundary layers.

Analysis of Turbulent Flows with Computer Programs

Analysis of Turbulent Flows with Computer Programs PDF Author: Tuncer Cebeci
Publisher: Elsevier
ISBN: 0080527183
Category : Technology & Engineering
Languages : en
Pages : 391

Get Book Here

Book Description
Modelling and Computation of Turbulent Flows has been written by one of the most prolific authors in the field of CFD. Professor of aerodynamics at SUPAERO and director of DMAE at ONERA, the author calls on both his academic and industrial experience when presenting this work. The field of CFD is strongly represented by the following corporate companies; Boeing; Airbus; Thales; United Technologies and General Electric, government bodies and academic institutions also have a strong interest in this exciting field. Each chapter has also been specifically constructed to constitute as an advanced textbook for PhD candidates working in the field of CFD, making this book essential reading for researchers, practitioners in industry and MSc and MEng students.* A broad overview of the development and application of Computational Fluid Dynamics (CFD), with real applications to industry* A Free CD-Rom which contains computer program's suitable for solving non-linear equations which arise in modeling turbulent flows* Professor Cebeci has published over 200 technical papers and 14 books, a world authority in the field of CFD

Air Bubble Entrainment in Free-Surface Turbulent Shear Flows

Air Bubble Entrainment in Free-Surface Turbulent Shear Flows PDF Author: Hubert Chanson
Publisher: Elsevier
ISBN: 0080526896
Category : Science
Languages : en
Pages : 403

Get Book Here

Book Description
This book develops an analysis of the air entrainment processes in free-surface flows. These flows are investigated as homogeneous mixtures with variable density. Several types of air-water free-surface flows are studied: plunging jet flows, open channel flows, and turbulent water jets discharging into air. Experimental observations reported by the author confirm the concept that the air-water mixture behaves as a homogeneous compressible fluid in each case. This book will be of great interest to professionals working in many fields of engineering: chemical, civil, environmental, mechanical, mining, metallurgy, and nuclear. Covers new information on the air-water flow field: air bubble distributions, air-water velocity profiles, air bubble sizes and bubble-turbulence interactions Features new analysis is developed for each flow configuration and compared successfully with model and prototype data Includes over 372 references and more than 170 figures with over 60 photographs Presents useful information for design engineers and research-and-development scientists who require a better understanding of the fluid mechanics of air-water flows

Free-surface Turbulent Flows

Free-surface Turbulent Flows PDF Author: Wen-Ling Hong
Publisher:
ISBN:
Category :
Languages : en
Pages : 256

Get Book Here

Book Description


Compressibility, Turbulence and High Speed Flow

Compressibility, Turbulence and High Speed Flow PDF Author: Thomas B. Gatski
Publisher: Academic Press
ISBN: 012397318X
Category : Science
Languages : en
Pages : 343

Get Book Here

Book Description
Compressibility, Turbulence and High Speed Flow introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range, through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. The book provides the reader with the necessary background and current trends in the theoretical and experimental aspects of compressible turbulent flows and compressible turbulence. Detailed derivations of the pertinent equations describing the motion of such turbulent flows is provided and an extensive discussion of the various approaches used in predicting both free shear and wall bounded flows is presented. Experimental measurement techniques common to the compressible flow regime are introduced with particular emphasis on the unique challenges presented by high speed flows. Both experimental and numerical simulation work is supplied throughout to provide the reader with an overall perspective of current trends. - An introduction to current techniques in compressible turbulent flow analysis - An approach that enables engineers to identify and solve complex compressible flow challenges - Prediction methodologies, including the Reynolds-averaged Navier Stokes (RANS) method, scale filtered methods and direct numerical simulation (DNS) - Current strategies focusing on compressible flow control

A First Course in Turbulence

A First Course in Turbulence PDF Author: Henk Tennekes
Publisher: MIT Press
ISBN: 0262536307
Category : Science
Languages : en
Pages : 316

Get Book Here

Book Description
This is the first book specifically designed to offer the student a smooth transitionary course between elementary fluid dynamics (which gives only last-minute attention to turbulence) and the professional literature on turbulent flow, where an advanced viewpoint is assumed. The subject of turbulence, the most forbidding in fluid dynamics, has usually proved treacherous to the beginner, caught in the whirls and eddies of its nonlinearities and statistical imponderables. This is the first book specifically designed to offer the student a smooth transitionary course between elementary fluid dynamics (which gives only last-minute attention to turbulence) and the professional literature on turbulent flow, where an advanced viewpoint is assumed. Moreover, the text has been developed for students, engineers, and scientists with different technical backgrounds and interests. Almost all flows, natural and man-made, are turbulent. Thus the subject is the concern of geophysical and environmental scientists (in dealing with atmospheric jet streams, ocean currents, and the flow of rivers, for example), of astrophysicists (in studying the photospheres of the sun and stars or mapping gaseous nebulae), and of engineers (in calculating pipe flows, jets, or wakes). Many such examples are discussed in the book. The approach taken avoids the difficulties of advanced mathematical development on the one side and the morass of experimental detail and empirical data on the other. As a result of following its midstream course, the text gives the student a physical understanding of the subject and deepens his intuitive insight into those problems that cannot now be rigorously solved. In particular, dimensional analysis is used extensively in dealing with those problems whose exact solution is mathematically elusive. Dimensional reasoning, scale arguments, and similarity rules are introduced at the beginning and are applied throughout. A discussion of Reynolds stress and the kinetic theory of gases provides the contrast needed to put mixing-length theory into proper perspective: the authors present a thorough comparison between the mixing-length models and dimensional analysis of shear flows. This is followed by an extensive treatment of vorticity dynamics, including vortex stretching and vorticity budgets. Two chapters are devoted to boundary-free shear flows and well-bounded turbulent shear flows. The examples presented include wakes, jets, shear layers, thermal plumes, atmospheric boundary layers, pipe and channel flow, and boundary layers in pressure gradients. The spatial structure of turbulent flow has been the subject of analysis in the book up to this point, at which a compact but thorough introduction to statistical methods is given. This prepares the reader to understand the stochastic and spectral structure of turbulence. The remainder of the book consists of applications of the statistical approach to the study of turbulent transport (including diffusion and mixing) and turbulent spectra.