Author: Vesselin S. Drensky
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 292
Book Description
The book is devoted to the combinatorial theory of polynomial algebras, free associative and free Lie algebras, and algebras with polynomial identities. It also examines the structure of automorphism groups of free and relatively free algebras. It is based on graduate courses and short cycles of lectures presented by the author at several universities and its goal is to involve the reader as soon as possible in the research area, to make him or her able to read books and papers on the considered topics. It contains both classical and contemporary results and methods. A specific feature of the book is that it includes as its inseparable part more than 250 exercises and examples with detailed hints (50 % of the numbered statements), some of them treating serious mathematical results. The exposition is accessible for graduate and advanced undergraduate students with standard background on linear algebra and some elements of ring theory and group theory. The professional mathematician working in the field of algebra and other related topics also will find the book useful for his or her research and teaching. TOC:Introduction 1. Commutative, Associative and Lie Algebras: Basic properties of algebras; Free algebras; The Poincaré-Birkhoff-Witt theorem. 2. Algebras with Polynomial Identities: Definitions and examples of PI-Algebras; Varieties and relatively free algebras; The theorem of Birkhoff. 3. The Specht Problem: The finite basis property; Lie algebras in characteristic 2. 4. Numerical Invariants of T-Ideals: Graded vector spaces; Homogeneous and multilinear polynomial identities; Proper polynomial identities. 5. Polynomial Identities of Concrete Algebras: Polynomial identities of the Grassmann algebra; Polynomial identities of the upper triangular matrices. 6. Methods of Commutative Algebra: Rational Hilbert series; Nonmatrix polynomial identities; Commutative and noncommutative invariant theory. 7. Polynomial Identities of the Matrix Algebras: The Amitsur-Levitzki theorem; Generic matrices; Central polynomials; Various identities of matrices. 8. Multilinear Polynomial Identities: The codimension theorem of Regev; Algebras with polynomial growth of codimensions; The Nagata-Higman theorem; The theory of Kemer. 9. Finitely Generated PI-Algebras: The problems of Burnside and Kurosch; The Shirshov theorem; Growth of algebras and Gelfand-Kirillov dimension; Gelfand-Kirillov dimension of PI-Algebras. 10. Automorphisms of Free Algebras: Automorphisms of groups and algebras; The polynomial algebra in two variables; The free associative algebra of rank two; Exponential automorphisms; Automorphisms of relatively free algebras. 11. Free Lie Algebras and Their Automorphisms: Bases and subalgebras of free Lie algebras; Automorphisms of free Lie algebras; Automorphisms of relatively free Lie algebras. 12. The Method of Representation Theory: Representations of finite groups; The symmetric group; Multilinear polynomial identities; The action of the general linear group; Proper polynomial identities; Polynomial identities of matrices.
Free Algebras and PI-algebras
Author: Vesselin S. Drensky
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 292
Book Description
The book is devoted to the combinatorial theory of polynomial algebras, free associative and free Lie algebras, and algebras with polynomial identities. It also examines the structure of automorphism groups of free and relatively free algebras. It is based on graduate courses and short cycles of lectures presented by the author at several universities and its goal is to involve the reader as soon as possible in the research area, to make him or her able to read books and papers on the considered topics. It contains both classical and contemporary results and methods. A specific feature of the book is that it includes as its inseparable part more than 250 exercises and examples with detailed hints (50 % of the numbered statements), some of them treating serious mathematical results. The exposition is accessible for graduate and advanced undergraduate students with standard background on linear algebra and some elements of ring theory and group theory. The professional mathematician working in the field of algebra and other related topics also will find the book useful for his or her research and teaching. TOC:Introduction 1. Commutative, Associative and Lie Algebras: Basic properties of algebras; Free algebras; The Poincaré-Birkhoff-Witt theorem. 2. Algebras with Polynomial Identities: Definitions and examples of PI-Algebras; Varieties and relatively free algebras; The theorem of Birkhoff. 3. The Specht Problem: The finite basis property; Lie algebras in characteristic 2. 4. Numerical Invariants of T-Ideals: Graded vector spaces; Homogeneous and multilinear polynomial identities; Proper polynomial identities. 5. Polynomial Identities of Concrete Algebras: Polynomial identities of the Grassmann algebra; Polynomial identities of the upper triangular matrices. 6. Methods of Commutative Algebra: Rational Hilbert series; Nonmatrix polynomial identities; Commutative and noncommutative invariant theory. 7. Polynomial Identities of the Matrix Algebras: The Amitsur-Levitzki theorem; Generic matrices; Central polynomials; Various identities of matrices. 8. Multilinear Polynomial Identities: The codimension theorem of Regev; Algebras with polynomial growth of codimensions; The Nagata-Higman theorem; The theory of Kemer. 9. Finitely Generated PI-Algebras: The problems of Burnside and Kurosch; The Shirshov theorem; Growth of algebras and Gelfand-Kirillov dimension; Gelfand-Kirillov dimension of PI-Algebras. 10. Automorphisms of Free Algebras: Automorphisms of groups and algebras; The polynomial algebra in two variables; The free associative algebra of rank two; Exponential automorphisms; Automorphisms of relatively free algebras. 11. Free Lie Algebras and Their Automorphisms: Bases and subalgebras of free Lie algebras; Automorphisms of free Lie algebras; Automorphisms of relatively free Lie algebras. 12. The Method of Representation Theory: Representations of finite groups; The symmetric group; Multilinear polynomial identities; The action of the general linear group; Proper polynomial identities; Polynomial identities of matrices.
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 292
Book Description
The book is devoted to the combinatorial theory of polynomial algebras, free associative and free Lie algebras, and algebras with polynomial identities. It also examines the structure of automorphism groups of free and relatively free algebras. It is based on graduate courses and short cycles of lectures presented by the author at several universities and its goal is to involve the reader as soon as possible in the research area, to make him or her able to read books and papers on the considered topics. It contains both classical and contemporary results and methods. A specific feature of the book is that it includes as its inseparable part more than 250 exercises and examples with detailed hints (50 % of the numbered statements), some of them treating serious mathematical results. The exposition is accessible for graduate and advanced undergraduate students with standard background on linear algebra and some elements of ring theory and group theory. The professional mathematician working in the field of algebra and other related topics also will find the book useful for his or her research and teaching. TOC:Introduction 1. Commutative, Associative and Lie Algebras: Basic properties of algebras; Free algebras; The Poincaré-Birkhoff-Witt theorem. 2. Algebras with Polynomial Identities: Definitions and examples of PI-Algebras; Varieties and relatively free algebras; The theorem of Birkhoff. 3. The Specht Problem: The finite basis property; Lie algebras in characteristic 2. 4. Numerical Invariants of T-Ideals: Graded vector spaces; Homogeneous and multilinear polynomial identities; Proper polynomial identities. 5. Polynomial Identities of Concrete Algebras: Polynomial identities of the Grassmann algebra; Polynomial identities of the upper triangular matrices. 6. Methods of Commutative Algebra: Rational Hilbert series; Nonmatrix polynomial identities; Commutative and noncommutative invariant theory. 7. Polynomial Identities of the Matrix Algebras: The Amitsur-Levitzki theorem; Generic matrices; Central polynomials; Various identities of matrices. 8. Multilinear Polynomial Identities: The codimension theorem of Regev; Algebras with polynomial growth of codimensions; The Nagata-Higman theorem; The theory of Kemer. 9. Finitely Generated PI-Algebras: The problems of Burnside and Kurosch; The Shirshov theorem; Growth of algebras and Gelfand-Kirillov dimension; Gelfand-Kirillov dimension of PI-Algebras. 10. Automorphisms of Free Algebras: Automorphisms of groups and algebras; The polynomial algebra in two variables; The free associative algebra of rank two; Exponential automorphisms; Automorphisms of relatively free algebras. 11. Free Lie Algebras and Their Automorphisms: Bases and subalgebras of free Lie algebras; Automorphisms of free Lie algebras; Automorphisms of relatively free Lie algebras. 12. The Method of Representation Theory: Representations of finite groups; The symmetric group; Multilinear polynomial identities; The action of the general linear group; Proper polynomial identities; Polynomial identities of matrices.
PI-Algebras
Author: N. Jacobson
Publisher: Springer
ISBN: 3540374272
Category : Mathematics
Languages : en
Pages : 120
Book Description
Publisher: Springer
ISBN: 3540374272
Category : Mathematics
Languages : en
Pages : 120
Book Description
The Concise Handbook of Algebra
Author: Alexander V. Mikhalev
Publisher: Springer Science & Business Media
ISBN: 9401732671
Category : Mathematics
Languages : en
Pages : 629
Book Description
It is by no means clear what comprises the "heart" or "core" of algebra, the part of algebra which every algebraist should know. Hence we feel that a book on "our heart" might be useful. We have tried to catch this heart in a collection of about 150 short sections, written by leading algebraists in these areas. These sections are organized in 9 chapters A, B, . . . , I. Of course, the selection is partly based on personal preferences, and we ask you for your understanding if some selections do not meet your taste (for unknown reasons, we only had problems in the chapter "Groups" to get enough articles in time). We hope that this book sets up a standard of what all algebraists are supposed to know in "their" chapters; interested people from other areas should be able to get a quick idea about the area. So the target group consists of anyone interested in algebra, from graduate students to established researchers, including those who want to obtain a quick overview or a better understanding of our selected topics. The prerequisites are something like the contents of standard textbooks on higher algebra. This book should also enable the reader to read the "big" Handbook (Hazewinkel 1999-) and other handbooks. In case of multiple authors, the authors are listed alphabetically; so their order has nothing to do with the amounts of their contributions.
Publisher: Springer Science & Business Media
ISBN: 9401732671
Category : Mathematics
Languages : en
Pages : 629
Book Description
It is by no means clear what comprises the "heart" or "core" of algebra, the part of algebra which every algebraist should know. Hence we feel that a book on "our heart" might be useful. We have tried to catch this heart in a collection of about 150 short sections, written by leading algebraists in these areas. These sections are organized in 9 chapters A, B, . . . , I. Of course, the selection is partly based on personal preferences, and we ask you for your understanding if some selections do not meet your taste (for unknown reasons, we only had problems in the chapter "Groups" to get enough articles in time). We hope that this book sets up a standard of what all algebraists are supposed to know in "their" chapters; interested people from other areas should be able to get a quick idea about the area. So the target group consists of anyone interested in algebra, from graduate students to established researchers, including those who want to obtain a quick overview or a better understanding of our selected topics. The prerequisites are something like the contents of standard textbooks on higher algebra. This book should also enable the reader to read the "big" Handbook (Hazewinkel 1999-) and other handbooks. In case of multiple authors, the authors are listed alphabetically; so their order has nothing to do with the amounts of their contributions.
Polynomial Identities in Algebras
Author: Onofrio Mario Di Vincenzo
Publisher: Springer Nature
ISBN: 3030631117
Category : Mathematics
Languages : en
Pages : 424
Book Description
This volume contains the talks given at the INDAM workshop entitled "Polynomial identites in algebras", held in Rome in September 2019. The purpose of the book is to present the current state of the art in the theory of PI-algebras. The review of the classical results in the last few years has pointed out new perspectives for the development of the theory. In particular, the contributions emphasize on the computational and combinatorial aspects of the theory, its connection with invariant theory, representation theory, growth problems. It is addressed to researchers in the field.
Publisher: Springer Nature
ISBN: 3030631117
Category : Mathematics
Languages : en
Pages : 424
Book Description
This volume contains the talks given at the INDAM workshop entitled "Polynomial identites in algebras", held in Rome in September 2019. The purpose of the book is to present the current state of the art in the theory of PI-algebras. The review of the classical results in the last few years has pointed out new perspectives for the development of the theory. In particular, the contributions emphasize on the computational and combinatorial aspects of the theory, its connection with invariant theory, representation theory, growth problems. It is addressed to researchers in the field.
Computational Aspects of Polynomial Identities
Author: Alexei Kanel-Belov
Publisher: CRC Press
ISBN: 1498720099
Category : Mathematics
Languages : en
Pages : 436
Book Description
Computational Aspects of Polynomial Identities: Volume l, Kemer's Theorems, 2nd Edition presents the underlying ideas in recent polynomial identity (PI)-theory and demonstrates the validity of the proofs of PI-theorems. This edition gives all the details involved in Kemer's proof of Specht's conjecture for affine PI-algebras in characteristic 0.The
Publisher: CRC Press
ISBN: 1498720099
Category : Mathematics
Languages : en
Pages : 436
Book Description
Computational Aspects of Polynomial Identities: Volume l, Kemer's Theorems, 2nd Edition presents the underlying ideas in recent polynomial identity (PI)-theory and demonstrates the validity of the proofs of PI-theorems. This edition gives all the details involved in Kemer's proof of Specht's conjecture for affine PI-algebras in characteristic 0.The
Selected Works of A.I. Shirshov
Author: Leonid A. Bokut
Publisher: Springer Science & Business Media
ISBN: 3764388587
Category : Mathematics
Languages : en
Pages : 235
Book Description
Anatolii Illarionovich Shirshov (1921–1981) was an outstanding Russian mat- maticianwhoseworksessentiallyin?uenced thetheoriesofassociative,Lie,Jordan and alternative rings. Many Shirshov’s students and students of his students had a successful research career in mathematics. AnatoliiShirshovwasbornonthe8thofAugustof1921inthevillageKolyvan near Novosibirsk. Before the II World War he started to study mathematics at Tomsk university but then went to the front to ?ght as a volunteer. In 1946 he continued his study at Voroshilovgrad (now Lugansk) Pedagogical Institute and at the same time taught mathematics at a secondary school. In 1950 Shirshov was accepted as a graduate student at the Moscow State University under the supervision of A. G. Kurosh. In 1953 he has successfully defended his Candidate of Science thesis (analog of a Ph. D. ) “Some problems in the theory of nonassociative rings and algebras” and joined the Department of Higher Algebra at the Moscow State University. In 1958 Shirshov was awarded the Doctor of Science degree for the thesis “On some classes of rings that are nearly associative”. In 1960 Shirshov moved to Novosibirsk (at the invitations of S. L. Sobolev and A. I. Malcev) to become one of the founders of the new mathematical institute of the Academy of Sciences (now Sobolev Institute of Mathematics) and to help the formation of the new Novosibirsk State University. From 1960 to 1973 he was a deputy director of the Institute and till his last days he led the research in the theory of algebras at the Institute.
Publisher: Springer Science & Business Media
ISBN: 3764388587
Category : Mathematics
Languages : en
Pages : 235
Book Description
Anatolii Illarionovich Shirshov (1921–1981) was an outstanding Russian mat- maticianwhoseworksessentiallyin?uenced thetheoriesofassociative,Lie,Jordan and alternative rings. Many Shirshov’s students and students of his students had a successful research career in mathematics. AnatoliiShirshovwasbornonthe8thofAugustof1921inthevillageKolyvan near Novosibirsk. Before the II World War he started to study mathematics at Tomsk university but then went to the front to ?ght as a volunteer. In 1946 he continued his study at Voroshilovgrad (now Lugansk) Pedagogical Institute and at the same time taught mathematics at a secondary school. In 1950 Shirshov was accepted as a graduate student at the Moscow State University under the supervision of A. G. Kurosh. In 1953 he has successfully defended his Candidate of Science thesis (analog of a Ph. D. ) “Some problems in the theory of nonassociative rings and algebras” and joined the Department of Higher Algebra at the Moscow State University. In 1958 Shirshov was awarded the Doctor of Science degree for the thesis “On some classes of rings that are nearly associative”. In 1960 Shirshov moved to Novosibirsk (at the invitations of S. L. Sobolev and A. I. Malcev) to become one of the founders of the new mathematical institute of the Academy of Sciences (now Sobolev Institute of Mathematics) and to help the formation of the new Novosibirsk State University. From 1960 to 1973 he was a deputy director of the Institute and till his last days he led the research in the theory of algebras at the Institute.
RINGS WITH POLYNOMIAL IDENTITIES AND FINITE DIMENSIONAL REPRESENTATIONS OF Algebras
Author: Eli Aljadeff
Publisher:
ISBN: 9781470456955
Category : PI-algebras
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9781470456955
Category : PI-algebras
Languages : en
Pages :
Book Description
Identical Relations in Lie Algebras
Author: Yuri Bahturin
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110566656
Category : Mathematics
Languages : en
Pages : 542
Book Description
This updated edition of a classic title studies identical relations in Lie algebras and also in other classes of algebras, a theory with over 40 years of development in which new methods and connections with other areas of mathematics have arisen. New topics covered include graded identities, identities of algebras with actions and coactions of various Hopf algebras, and the representation theory of the symmetric and general linear group.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110566656
Category : Mathematics
Languages : en
Pages : 542
Book Description
This updated edition of a classic title studies identical relations in Lie algebras and also in other classes of algebras, a theory with over 40 years of development in which new methods and connections with other areas of mathematics have arisen. New topics covered include graded identities, identities of algebras with actions and coactions of various Hopf algebras, and the representation theory of the symmetric and general linear group.
Non-Associative Algebra and Its Applications
Author: Lev Sabinin
Publisher: CRC Press
ISBN: 1420003453
Category : Mathematics
Languages : en
Pages : 553
Book Description
With contributions derived from presentations at an international conference, Non-Associative Algebra and Its Applications explores a wide range of topics focusing on Lie algebras, nonassociative rings and algebras, quasigroups, loops, and related systems as well as applications of nonassociative algebra to geometry, physics, and natural sciences.
Publisher: CRC Press
ISBN: 1420003453
Category : Mathematics
Languages : en
Pages : 553
Book Description
With contributions derived from presentations at an international conference, Non-Associative Algebra and Its Applications explores a wide range of topics focusing on Lie algebras, nonassociative rings and algebras, quasigroups, loops, and related systems as well as applications of nonassociative algebra to geometry, physics, and natural sciences.
A Taste of Jordan Algebras
Author: Kevin McCrimmon
Publisher: Springer Science & Business Media
ISBN: 0387217967
Category : Mathematics
Languages : en
Pages : 584
Book Description
This book describes the history of Jordan algebras and describes in full mathematical detail the recent structure theory for Jordan algebras of arbitrary dimension due to Efim Zel'manov. Jordan algebras crop up in many surprising settings, and find application to a variety of mathematical areas. No knowledge is required beyond standard first-year graduate algebra courses.
Publisher: Springer Science & Business Media
ISBN: 0387217967
Category : Mathematics
Languages : en
Pages : 584
Book Description
This book describes the history of Jordan algebras and describes in full mathematical detail the recent structure theory for Jordan algebras of arbitrary dimension due to Efim Zel'manov. Jordan algebras crop up in many surprising settings, and find application to a variety of mathematical areas. No knowledge is required beyond standard first-year graduate algebra courses.