Author: Zdenek P. Bazant
Publisher: Springer Science & Business Media
ISBN: 9401146594
Category : Science
Languages : en
Pages : 432
Book Description
This volume is a collection of the papers given at the workshop on Fracture Scaling, held at the University of Maryland, USA, 10-12 June 1999, under the sponsorship of the Office of Naval Research, Arlington, VA, USA. These papers can be grouped under five major themes: Micromechanical analysis Size effects in fiber composites Scaling and heterogeneity Computational aspects and nonlocal or gradient models Size effects in concrete, ice and soils . This workshop is the result of a significant research effort, supported by the Office of Naval Research, into the problems of scaling of fracture in fiber composites, and generally into the problems of scaling in solid mechanics. These problems, which are of interest for many materials, especially all quasibrittle materials, share similar characteristics. Thus, progress in the understanding of scaling problems for one material may help progress for another material. This makes it clear that a dialogue between researchers in various fields of mechanics is highly desirable and should be promoted. In view of this, this volume should be of interest to researchers and advanced graduate students in materials science, solid mechanics and civil engineering.
Fracture Scaling
Author: Zdenek P. Bazant
Publisher: Springer Science & Business Media
ISBN: 9401146594
Category : Science
Languages : en
Pages : 432
Book Description
This volume is a collection of the papers given at the workshop on Fracture Scaling, held at the University of Maryland, USA, 10-12 June 1999, under the sponsorship of the Office of Naval Research, Arlington, VA, USA. These papers can be grouped under five major themes: Micromechanical analysis Size effects in fiber composites Scaling and heterogeneity Computational aspects and nonlocal or gradient models Size effects in concrete, ice and soils . This workshop is the result of a significant research effort, supported by the Office of Naval Research, into the problems of scaling of fracture in fiber composites, and generally into the problems of scaling in solid mechanics. These problems, which are of interest for many materials, especially all quasibrittle materials, share similar characteristics. Thus, progress in the understanding of scaling problems for one material may help progress for another material. This makes it clear that a dialogue between researchers in various fields of mechanics is highly desirable and should be promoted. In view of this, this volume should be of interest to researchers and advanced graduate students in materials science, solid mechanics and civil engineering.
Publisher: Springer Science & Business Media
ISBN: 9401146594
Category : Science
Languages : en
Pages : 432
Book Description
This volume is a collection of the papers given at the workshop on Fracture Scaling, held at the University of Maryland, USA, 10-12 June 1999, under the sponsorship of the Office of Naval Research, Arlington, VA, USA. These papers can be grouped under five major themes: Micromechanical analysis Size effects in fiber composites Scaling and heterogeneity Computational aspects and nonlocal or gradient models Size effects in concrete, ice and soils . This workshop is the result of a significant research effort, supported by the Office of Naval Research, into the problems of scaling of fracture in fiber composites, and generally into the problems of scaling in solid mechanics. These problems, which are of interest for many materials, especially all quasibrittle materials, share similar characteristics. Thus, progress in the understanding of scaling problems for one material may help progress for another material. This makes it clear that a dialogue between researchers in various fields of mechanics is highly desirable and should be promoted. In view of this, this volume should be of interest to researchers and advanced graduate students in materials science, solid mechanics and civil engineering.
Size-Scale Effects in the Failure Mechanisms of Materials and Structures
Author: Alberto Carpinteri
Publisher: CRC Press
ISBN: 0203475925
Category : Architecture
Languages : en
Pages : 609
Book Description
Invited international contributions to this exciting new research field are included in this volume. It contains the specially selected papers from 45 key specialists given at the Symposium held under the auspices of the prestigious International Union of Theoretical and Applied Mechanics at Turin in October 1994.
Publisher: CRC Press
ISBN: 0203475925
Category : Architecture
Languages : en
Pages : 609
Book Description
Invited international contributions to this exciting new research field are included in this volume. It contains the specially selected papers from 45 key specialists given at the Symposium held under the auspices of the prestigious International Union of Theoretical and Applied Mechanics at Turin in October 1994.
Scaling Methods in Soil Physics
Author: Yakov Pachepsky
Publisher: CRC Press
ISBN: 0203011066
Category : Science
Languages : en
Pages : 470
Book Description
The scaling issue remains one of the largest problems in soil science and hydrology. This book is a unique compendium of ideas, conceptual approaches, techniques, and methodologies for scaling soil physical properties. Scaling Methods in Soil Physics covers many methods of scaling that will be useful in helping scientists across a range of soil-rel
Publisher: CRC Press
ISBN: 0203011066
Category : Science
Languages : en
Pages : 470
Book Description
The scaling issue remains one of the largest problems in soil science and hydrology. This book is a unique compendium of ideas, conceptual approaches, techniques, and methodologies for scaling soil physical properties. Scaling Methods in Soil Physics covers many methods of scaling that will be useful in helping scientists across a range of soil-rel
Continuum Damage Mechanics of Materials and Structures
Author: O. Allix
Publisher: Elsevier
ISBN: 0080545998
Category : Computers
Languages : en
Pages : 397
Book Description
Created in 1975, LMT-Cachan is a joint laboratory École Normale Superieure de Cachan, Pierre & Marie Curie (Paris 6) University and the French Research Council CNRS (Department of Engineering Sciences).The Year 2000 marked the 25th anniversary of LMT. On this occasion, a series of lectures was organized in Cachan in September-October, 2000. This publication contains peer-reviewed proceedings of these lectures and is aimed to present engineers and scientists with an overview of the latest developments in the field of damage mechanics. The formulation of damage models and their identification procedures were discussed for a variety of materials.
Publisher: Elsevier
ISBN: 0080545998
Category : Computers
Languages : en
Pages : 397
Book Description
Created in 1975, LMT-Cachan is a joint laboratory École Normale Superieure de Cachan, Pierre & Marie Curie (Paris 6) University and the French Research Council CNRS (Department of Engineering Sciences).The Year 2000 marked the 25th anniversary of LMT. On this occasion, a series of lectures was organized in Cachan in September-October, 2000. This publication contains peer-reviewed proceedings of these lectures and is aimed to present engineers and scientists with an overview of the latest developments in the field of damage mechanics. The formulation of damage models and their identification procedures were discussed for a variety of materials.
Scale Effects in Rock Masses 93
Author: A. Pinto da Cunha
Publisher: CRC Press
ISBN: 1000099792
Category : Technology & Engineering
Languages : en
Pages : 366
Book Description
The proceedings of the 2nd International Scale Effects in Rock Masses, held in Lisbon, June 25, 1993. The text includes coverage of scale effects in the determination of the deformability and strength of rock masses and scale effects in the determination of internal rock masses.
Publisher: CRC Press
ISBN: 1000099792
Category : Technology & Engineering
Languages : en
Pages : 366
Book Description
The proceedings of the 2nd International Scale Effects in Rock Masses, held in Lisbon, June 25, 1993. The text includes coverage of scale effects in the determination of the deformability and strength of rock masses and scale effects in the determination of internal rock masses.
Scaling of Structural Strength
Author: Zdenek P. Bazant
Publisher: Elsevier
ISBN: 0080461352
Category : Technology & Engineering
Languages : en
Pages : 342
Book Description
This book is concerned with a leading-edge topic of great interest and importance, exemplifying the relationship between experimental research, material modeling, structural analysis and design. It focuses on the effect of structure size on structural strength and failure behaviour. Bazant's theory has found wide application to all quasibrittle materials, including rocks, ice, modern fiber composites and tough ceramics. The topic of energetic scaling, considered controversial until recently, is finally getting the attention it deserves, mainly as a result of Bazant's pioneering work. In this new edition an extra section of data and new appendices covering twelve new application developments are included. - The first book to show the 'size effect' theory of structure size on strength - Presents the principles and applications of Bazant's pioneering work on structural strength - Revised edition with new material on topics including asymptotic matching, flexural strength of fiber-composite laminates, polymeric foam fractures and the design of reinforced concrete beams
Publisher: Elsevier
ISBN: 0080461352
Category : Technology & Engineering
Languages : en
Pages : 342
Book Description
This book is concerned with a leading-edge topic of great interest and importance, exemplifying the relationship between experimental research, material modeling, structural analysis and design. It focuses on the effect of structure size on structural strength and failure behaviour. Bazant's theory has found wide application to all quasibrittle materials, including rocks, ice, modern fiber composites and tough ceramics. The topic of energetic scaling, considered controversial until recently, is finally getting the attention it deserves, mainly as a result of Bazant's pioneering work. In this new edition an extra section of data and new appendices covering twelve new application developments are included. - The first book to show the 'size effect' theory of structure size on strength - Presents the principles and applications of Bazant's pioneering work on structural strength - Revised edition with new material on topics including asymptotic matching, flexural strength of fiber-composite laminates, polymeric foam fractures and the design of reinforced concrete beams
Structural Crashworthiness and Failure
Author: N. Jones
Publisher: CRC Press
ISBN: 0203860454
Category : Technology & Engineering
Languages : en
Pages : 454
Book Description
This book contains twelve invited lectures from the Third International Symposium on Structural Crashworthiness. Particular emphasis is given to the failure predictions for ductile metal structures under large dynamic loads and to the behaviour of composite and cellular structures.
Publisher: CRC Press
ISBN: 0203860454
Category : Technology & Engineering
Languages : en
Pages : 454
Book Description
This book contains twelve invited lectures from the Third International Symposium on Structural Crashworthiness. Particular emphasis is given to the failure predictions for ductile metal structures under large dynamic loads and to the behaviour of composite and cellular structures.
Quasibrittle Fracture Mechanics and Size Effect
Author: Zdenek P. Ba^D%zant
Publisher: Oxford University Press
ISBN: 0192661388
Category : Science
Languages : en
Pages : 332
Book Description
Many modern engineering structures are composed of brittle heterogenous, or quasibrittle, materials. These include concrete, composites, tough ceramics, rocks, cold asphalt mixtures, and many brittle materials at the microscale. Understanding the failure behavior of these materials is of paramount importance for improving the resilience and sustainability of various engineering structures including civil infrastructure, aircraft, ships, military armors, and microelectronic devices. Designed for graduate and upper-level undergraduate university courses, this textbook provides a comprehensive treatment of quasibrittle fracture mechanics. It includes a concise but rigorous examination of linear elastic fracture mechanics, which is the foundation of all fracture mechanics. It also covers the fundamental concepts of nonlinear fracture mechanics, and introduces more advanced concepts such as triaxial stress state in the fracture process zone, nonlocal continuum models, and discrete computational models. Finally, the book features extensive discussion of the various practical applications of quasibrittle fracture mechanics across different structures and engineering disciplines, and throughout includes exercises and problems for students to test their understanding.
Publisher: Oxford University Press
ISBN: 0192661388
Category : Science
Languages : en
Pages : 332
Book Description
Many modern engineering structures are composed of brittle heterogenous, or quasibrittle, materials. These include concrete, composites, tough ceramics, rocks, cold asphalt mixtures, and many brittle materials at the microscale. Understanding the failure behavior of these materials is of paramount importance for improving the resilience and sustainability of various engineering structures including civil infrastructure, aircraft, ships, military armors, and microelectronic devices. Designed for graduate and upper-level undergraduate university courses, this textbook provides a comprehensive treatment of quasibrittle fracture mechanics. It includes a concise but rigorous examination of linear elastic fracture mechanics, which is the foundation of all fracture mechanics. It also covers the fundamental concepts of nonlinear fracture mechanics, and introduces more advanced concepts such as triaxial stress state in the fracture process zone, nonlocal continuum models, and discrete computational models. Finally, the book features extensive discussion of the various practical applications of quasibrittle fracture mechanics across different structures and engineering disciplines, and throughout includes exercises and problems for students to test their understanding.
Handbook of Materials Behavior Models, Three-Volume Set
Author: Jean LeMaitre
Publisher: Elsevier
ISBN: 0080533639
Category : Technology & Engineering
Languages : en
Pages : 1231
Book Description
This first of a kind reference/handbook deals with nonlinear models and properties of material. In the study the behavior of materials' phenomena no unique laws exist. Therefore, researchers often turn to models to determine the properties of materials. This will be the first book to bring together such a comprehensive collection of these models. The Handbook deals with all solid materials, and is organized first by phenomena. Most of the materials models presented in an applications-oriented fashion, less descriptive and more practitioner-geared, making it useful in the daily working activities of professionals. The Handbook is divided into three volumes. Volume I, Deformation of Materials, introduces general methodologies in the art of modeling, in choosing materials, and in the "so-called" size effect. Chapters 2-5 deal respectively with elasticity and viscoelasticity, yield limit, plasticity, and visco-plasticity. Volume II, Failures in Materials, provides models on such concerns as continuous damage, cracking and fracture, and friction wear. Volume III, Multiphysics Behavior, deals with multiphysics coupled behaviors. Chapter's 10 and 11 are devoted to special classes of materials (composites, biomaterials, and geomaterials). The different sections within each chapter describe one model each with its domain of validity, its background, its formulation, the identification of material parameters for as many materials as possible, and advice on how to implement or use the model. The study of the behavior of materials, especially solids, is related to hundreds of areas in engineering design and control. Predicting how a material will perform under various conditions is essential to determining the optimal performance of machines and vehicles and the structural integrity of buildings, as well as safety issues. Such practical examples would be how various new materials, such as those used in new airplane hulls, react to heat or cold or sudden temperature changes, or how new building materials hold up under extreme earthquake conditions. The Handbook of Materials Behavior Models: Gathers together 117 models of behavior of materials written by the most eminent specialists in their field Presents each model's domain of validity, a short background, its formulation, a methodology to identify the materials parameters, advise on how to use it in practical applications as well as extensive references Covers all solid materials: metals, alloys, ceramics, polymers, composites, concrete, wood, rubber, geomaterials such as rocks, soils, sand, clay, biomaterials, etc Concerns all engineering phenomena: elasticity, viscoelasticity, yield limit, plasticity, viscoplasticity, damage, fracture, friction, and wear
Publisher: Elsevier
ISBN: 0080533639
Category : Technology & Engineering
Languages : en
Pages : 1231
Book Description
This first of a kind reference/handbook deals with nonlinear models and properties of material. In the study the behavior of materials' phenomena no unique laws exist. Therefore, researchers often turn to models to determine the properties of materials. This will be the first book to bring together such a comprehensive collection of these models. The Handbook deals with all solid materials, and is organized first by phenomena. Most of the materials models presented in an applications-oriented fashion, less descriptive and more practitioner-geared, making it useful in the daily working activities of professionals. The Handbook is divided into three volumes. Volume I, Deformation of Materials, introduces general methodologies in the art of modeling, in choosing materials, and in the "so-called" size effect. Chapters 2-5 deal respectively with elasticity and viscoelasticity, yield limit, plasticity, and visco-plasticity. Volume II, Failures in Materials, provides models on such concerns as continuous damage, cracking and fracture, and friction wear. Volume III, Multiphysics Behavior, deals with multiphysics coupled behaviors. Chapter's 10 and 11 are devoted to special classes of materials (composites, biomaterials, and geomaterials). The different sections within each chapter describe one model each with its domain of validity, its background, its formulation, the identification of material parameters for as many materials as possible, and advice on how to implement or use the model. The study of the behavior of materials, especially solids, is related to hundreds of areas in engineering design and control. Predicting how a material will perform under various conditions is essential to determining the optimal performance of machines and vehicles and the structural integrity of buildings, as well as safety issues. Such practical examples would be how various new materials, such as those used in new airplane hulls, react to heat or cold or sudden temperature changes, or how new building materials hold up under extreme earthquake conditions. The Handbook of Materials Behavior Models: Gathers together 117 models of behavior of materials written by the most eminent specialists in their field Presents each model's domain of validity, a short background, its formulation, a methodology to identify the materials parameters, advise on how to use it in practical applications as well as extensive references Covers all solid materials: metals, alloys, ceramics, polymers, composites, concrete, wood, rubber, geomaterials such as rocks, soils, sand, clay, biomaterials, etc Concerns all engineering phenomena: elasticity, viscoelasticity, yield limit, plasticity, viscoplasticity, damage, fracture, friction, and wear
Integral Methods in Science and Engineering
Author: Christian Constanda
Publisher: Springer Science & Business Media
ISBN: 1461478286
Category : Mathematics
Languages : en
Pages : 410
Book Description
Advances in science and technology are driven by the development of rigorous mathematical foundations for the study of both theoretical and experimental models. With certain methodological variations, this type of study always comes down to the application of analytic or computational integration procedures, making such tools indispensible. With a wealth of cutting-edge research in the field, Integral Methods in Science and Engineering: Progress in Numerical and Analytic Techniques provides a detailed portrait of both the construction of theoretical integral techniques and their application to specific problems in science and engineering. The chapters in this volume are based on talks given by well-known researchers at the Twelfth International Conference on Integral Methods in Science and Engineering, July 23–27, 2012, in Porto Alegre, Brazil. They address a broad range of topics, from problems of existence and uniqueness for singular integral equations on domain boundaries to numerical integration via finite and boundary elements, conservation laws, hybrid methods, and other quadrature-related approaches. The contributing authors bring their expertise to bear on a number of topical problems that have to date resisted solution, thereby offering help and guidance to fellow professionals worldwide. Integral Methods in Science and Engineering: Progress in Numerical and Analytic Techniques will be a valuable resource for researchers in applied mathematics, physics, and mechanical and electrical engineering, for graduate students in these disciplines, and for various other professionals who use integration as an essential tool in their work.
Publisher: Springer Science & Business Media
ISBN: 1461478286
Category : Mathematics
Languages : en
Pages : 410
Book Description
Advances in science and technology are driven by the development of rigorous mathematical foundations for the study of both theoretical and experimental models. With certain methodological variations, this type of study always comes down to the application of analytic or computational integration procedures, making such tools indispensible. With a wealth of cutting-edge research in the field, Integral Methods in Science and Engineering: Progress in Numerical and Analytic Techniques provides a detailed portrait of both the construction of theoretical integral techniques and their application to specific problems in science and engineering. The chapters in this volume are based on talks given by well-known researchers at the Twelfth International Conference on Integral Methods in Science and Engineering, July 23–27, 2012, in Porto Alegre, Brazil. They address a broad range of topics, from problems of existence and uniqueness for singular integral equations on domain boundaries to numerical integration via finite and boundary elements, conservation laws, hybrid methods, and other quadrature-related approaches. The contributing authors bring their expertise to bear on a number of topical problems that have to date resisted solution, thereby offering help and guidance to fellow professionals worldwide. Integral Methods in Science and Engineering: Progress in Numerical and Analytic Techniques will be a valuable resource for researchers in applied mathematics, physics, and mechanical and electrical engineering, for graduate students in these disciplines, and for various other professionals who use integration as an essential tool in their work.