Author: James B Bassingthwaighte
Publisher: Springer
ISBN: 1461475724
Category : Medical
Languages : en
Pages : 371
Book Description
I know that most men, including those at ease with the problems of the greatest complexity, can seldom accept even the simplest and most obvious truth if it be such as would oblige them to admit the falsity of conclusions which they have delighted in explaining to colleagues, which they have proudly taught to others, and which they have woven, thread by thread, into the fabric of their lives. Joseph Ford quoting Tolstoy (Gleick, 1987) We are used to thinking that natural objects have a certain form and that this form is determined by a characteristic scale. If we magnify the object beyond this scale, no new features are revealed. To correctly measure the properties of the object, such as length, area, or volume, we measure it at a resolution finer than the characteristic scale of the object. We expect that the value we measure has a unique value for the object. This simple idea is the basis of the calculus, Euclidean geometry, and the theory of measurement. However, Mandelbrot (1977, 1983) brought to the world's attention that many natural objects simply do not have this preconceived form. Many of the structures in space and processes in time of living things have a very different form. Living things have structures in space and fluctuations in time that cannot be characterized by one spatial or temporal scale. They extend over many spatial or temporal scales.
Fractal Physiology
Author: James B Bassingthwaighte
Publisher: Springer
ISBN: 1461475724
Category : Medical
Languages : en
Pages : 371
Book Description
I know that most men, including those at ease with the problems of the greatest complexity, can seldom accept even the simplest and most obvious truth if it be such as would oblige them to admit the falsity of conclusions which they have delighted in explaining to colleagues, which they have proudly taught to others, and which they have woven, thread by thread, into the fabric of their lives. Joseph Ford quoting Tolstoy (Gleick, 1987) We are used to thinking that natural objects have a certain form and that this form is determined by a characteristic scale. If we magnify the object beyond this scale, no new features are revealed. To correctly measure the properties of the object, such as length, area, or volume, we measure it at a resolution finer than the characteristic scale of the object. We expect that the value we measure has a unique value for the object. This simple idea is the basis of the calculus, Euclidean geometry, and the theory of measurement. However, Mandelbrot (1977, 1983) brought to the world's attention that many natural objects simply do not have this preconceived form. Many of the structures in space and processes in time of living things have a very different form. Living things have structures in space and fluctuations in time that cannot be characterized by one spatial or temporal scale. They extend over many spatial or temporal scales.
Publisher: Springer
ISBN: 1461475724
Category : Medical
Languages : en
Pages : 371
Book Description
I know that most men, including those at ease with the problems of the greatest complexity, can seldom accept even the simplest and most obvious truth if it be such as would oblige them to admit the falsity of conclusions which they have delighted in explaining to colleagues, which they have proudly taught to others, and which they have woven, thread by thread, into the fabric of their lives. Joseph Ford quoting Tolstoy (Gleick, 1987) We are used to thinking that natural objects have a certain form and that this form is determined by a characteristic scale. If we magnify the object beyond this scale, no new features are revealed. To correctly measure the properties of the object, such as length, area, or volume, we measure it at a resolution finer than the characteristic scale of the object. We expect that the value we measure has a unique value for the object. This simple idea is the basis of the calculus, Euclidean geometry, and the theory of measurement. However, Mandelbrot (1977, 1983) brought to the world's attention that many natural objects simply do not have this preconceived form. Many of the structures in space and processes in time of living things have a very different form. Living things have structures in space and fluctuations in time that cannot be characterized by one spatial or temporal scale. They extend over many spatial or temporal scales.
Fractal Physiology and Chaos in Medicine
Author: Bruce J. West
Publisher: World Scientific
ISBN: 9814417793
Category : Mathematics
Languages : en
Pages : 345
Book Description
This exceptional book is concerned with the application of fractals and chaos, as well as other concepts from nonlinear dynamics to biomedical phenomena. Herein we seek to communicate the excitement being experienced by scientists upon making application of these concepts within the life sciences. Mathematical concepts are introduced using biomedical data sets and the phenomena being explained take precedence over the mathematics. In this new edition what has withstood the test of time has been updated and modernized; speculations that were not borne out have been expunged and the breakthroughs that have occurred in the intervening years are emphasized. The book provides a comprehensive overview of a nascent theory of medicine, including a new chapter on the theory of complex networks as they pertain to medicine.
Publisher: World Scientific
ISBN: 9814417793
Category : Mathematics
Languages : en
Pages : 345
Book Description
This exceptional book is concerned with the application of fractals and chaos, as well as other concepts from nonlinear dynamics to biomedical phenomena. Herein we seek to communicate the excitement being experienced by scientists upon making application of these concepts within the life sciences. Mathematical concepts are introduced using biomedical data sets and the phenomena being explained take precedence over the mathematics. In this new edition what has withstood the test of time has been updated and modernized; speculations that were not borne out have been expunged and the breakthroughs that have occurred in the intervening years are emphasized. The book provides a comprehensive overview of a nascent theory of medicine, including a new chapter on the theory of complex networks as they pertain to medicine.
Fractals
Author: Dinesh Kumar
Publisher: CRC Press
ISBN: 1351678388
Category : Mathematics
Languages : en
Pages : 134
Book Description
The book provides an insight into the advantages and limitations of the use of fractals in biomedical data. It begins with a brief introduction to the concept of fractals and other associated measures and describes applications for biomedical signals and images. Properties of biological data in relations to fractals and entropy, and the association with health and ageing are also covered. The book provides a detailed description of new techniques on physiological signals and images based on the fractal and chaos theory. The aim of this book is to serve as a comprehensive guide for researchers and readers interested in biomedical signal and image processing and feature extraction for disease risk analyses and rehabilitation applications. While it provides the mathematical rigor for those readers interested in such details, it also describes the topic intuitively such that it is suitable for audience who are interested in applying the methods to healthcare and clinical applications. The book is the outcome of years of research by the authors and is comprehensive and includes other reported outcomes.
Publisher: CRC Press
ISBN: 1351678388
Category : Mathematics
Languages : en
Pages : 134
Book Description
The book provides an insight into the advantages and limitations of the use of fractals in biomedical data. It begins with a brief introduction to the concept of fractals and other associated measures and describes applications for biomedical signals and images. Properties of biological data in relations to fractals and entropy, and the association with health and ageing are also covered. The book provides a detailed description of new techniques on physiological signals and images based on the fractal and chaos theory. The aim of this book is to serve as a comprehensive guide for researchers and readers interested in biomedical signal and image processing and feature extraction for disease risk analyses and rehabilitation applications. While it provides the mathematical rigor for those readers interested in such details, it also describes the topic intuitively such that it is suitable for audience who are interested in applying the methods to healthcare and clinical applications. The book is the outcome of years of research by the authors and is comprehensive and includes other reported outcomes.
Fractals in Biology and Medicine
Author: Gabriele A. Losa
Publisher: Birkhäuser
ISBN: 3034881193
Category : Mathematics
Languages : en
Pages : 354
Book Description
In March 2000 leading scientists gathered at the Centro Seminariale Monte Verità, Ascona, Switzerland, for the Third International Symposium on "Fractals 2000 in Biology and Medicine". This interdisciplinary conference provided stimulating contributions from the very topical field Fractals in Biology and Medicine. This volume highlights the growing power and efficacy of the fractal geometry in understanding how to analyze living phenomena and complex shapes.
Publisher: Birkhäuser
ISBN: 3034881193
Category : Mathematics
Languages : en
Pages : 354
Book Description
In March 2000 leading scientists gathered at the Centro Seminariale Monte Verità, Ascona, Switzerland, for the Third International Symposium on "Fractals 2000 in Biology and Medicine". This interdisciplinary conference provided stimulating contributions from the very topical field Fractals in Biology and Medicine. This volume highlights the growing power and efficacy of the fractal geometry in understanding how to analyze living phenomena and complex shapes.
Fractals in Biology and Medicine
Author: Gabriele A. Losa
Publisher: Springer Science & Business Media
ISBN: 9783764371722
Category : Mathematics
Languages : en
Pages : 334
Book Description
This volume is number four in a series of proceedings volumes from the International Symposia on Fractals in Biology and Medicine in Ascona, Switzerland which have been inspired by the work of Benoît Mandelbrot seeking to extend the concepts towards the life sciences. It highlights the potential that fractal geometry offers for elucidating and explaining the complex make-up of cells, tissues and biological organisms either in normal or in pathological conditions.
Publisher: Springer Science & Business Media
ISBN: 9783764371722
Category : Mathematics
Languages : en
Pages : 334
Book Description
This volume is number four in a series of proceedings volumes from the International Symposia on Fractals in Biology and Medicine in Ascona, Switzerland which have been inspired by the work of Benoît Mandelbrot seeking to extend the concepts towards the life sciences. It highlights the potential that fractal geometry offers for elucidating and explaining the complex make-up of cells, tissues and biological organisms either in normal or in pathological conditions.
Physics of Fractal Operators
Author: Bruce West
Publisher: Springer Science & Business Media
ISBN: 0387217460
Category : Science
Languages : en
Pages : 355
Book Description
This text describes the statistcal behavior of complex systems and shows how the fractional calculus can be used to model the behavior. The discussion emphasizes physical phenomena whose evolution is best described using the fractional calculus, such as systems with long-range spatial interactions or long-time memory. The book gives general strategies for understanding wave propagation through random media, the nonlinear response of complex materials, and the fluctuations of heat transport in heterogeneous materials.
Publisher: Springer Science & Business Media
ISBN: 0387217460
Category : Science
Languages : en
Pages : 355
Book Description
This text describes the statistcal behavior of complex systems and shows how the fractional calculus can be used to model the behavior. The discussion emphasizes physical phenomena whose evolution is best described using the fractional calculus, such as systems with long-range spatial interactions or long-time memory. The book gives general strategies for understanding wave propagation through random media, the nonlinear response of complex materials, and the fluctuations of heat transport in heterogeneous materials.
Nonlinear Dynamics in Physiology
Author: Mark Shelhamer
Publisher: World Scientific
ISBN: 9812700293
Category : Science
Languages : en
Pages : 367
Book Description
This book provides a compilation of mathematical-computational tools that are used to analyze experimental data. The techniques presented are those that have been most widely and successfully applied to the analysis of physiological systems, and address issues such as randomness, determinism, dimension, and nonlinearity. In addition to bringing together the most useful methods, sufficient mathematical background is provided to enable non-specialists to understand and apply the computational techniques. Thus, the material will be useful to life-science investigators on several levels, from physiologists to bioengineer.Initial chapters present background material on dynamic systems, statistics, and linear system analysis. Each computational technique is demonstrated with examples drawn from physiology, and several chapters present case studies from oculomotor control, neuroscience, cardiology, psychology, and epidemiology. Throughout the text, historical notes give a sense of the development of the field and provide a perspective on how the techniques were developed and where they might lead. The overall approach is based largely on the analysis of trajectories in the state space, with emphasis on time-delay reconstruction of state-space trajectories. The goal of the book is to enable readers to apply these methods to their own research.
Publisher: World Scientific
ISBN: 9812700293
Category : Science
Languages : en
Pages : 367
Book Description
This book provides a compilation of mathematical-computational tools that are used to analyze experimental data. The techniques presented are those that have been most widely and successfully applied to the analysis of physiological systems, and address issues such as randomness, determinism, dimension, and nonlinearity. In addition to bringing together the most useful methods, sufficient mathematical background is provided to enable non-specialists to understand and apply the computational techniques. Thus, the material will be useful to life-science investigators on several levels, from physiologists to bioengineer.Initial chapters present background material on dynamic systems, statistics, and linear system analysis. Each computational technique is demonstrated with examples drawn from physiology, and several chapters present case studies from oculomotor control, neuroscience, cardiology, psychology, and epidemiology. Throughout the text, historical notes give a sense of the development of the field and provide a perspective on how the techniques were developed and where they might lead. The overall approach is based largely on the analysis of trajectories in the state space, with emphasis on time-delay reconstruction of state-space trajectories. The goal of the book is to enable readers to apply these methods to their own research.
Where Medicine Went Wrong
Author: Bruce J. West
Publisher: World Scientific
ISBN: 9812773096
Category : Medical
Languages : en
Pages : 352
Book Description
The field of solid state ionics deals with ionically conducting materials in the solid state and numerous devices based on such materials. Solid state ionic materials cover a wide spectrum, ranging from inorganic crystalline and polycrystalline solids, ceramics, glasses, polymers, composites and nano-scale materials. A large number of Scientists in Asia are engaged in research in solid state ionic materials and devices and since 1988. The Asian Society for solid state ionics has played a key role in organizing a series of bi-ennial conferences on solid state ionics in different Asian countries. The contributions in this volume were presented at the 10th conference in the series organized by the Postgraduate Institute of Science (PGIS) and the Faculty of Science, University of Peradeniya, Sri Lanka, which coincided with the 10th Anniversary of the Postgraduate Institute of Science (PGIS). The topics cover solid state ionic materials as well as such devices as solid state batteries, fuel cells, sensors, and electrochromic devices. The aspects covered include theoretical studies and modeling, experimental techniques, materials synthesis and characterization, device fabrication and characterization.
Publisher: World Scientific
ISBN: 9812773096
Category : Medical
Languages : en
Pages : 352
Book Description
The field of solid state ionics deals with ionically conducting materials in the solid state and numerous devices based on such materials. Solid state ionic materials cover a wide spectrum, ranging from inorganic crystalline and polycrystalline solids, ceramics, glasses, polymers, composites and nano-scale materials. A large number of Scientists in Asia are engaged in research in solid state ionic materials and devices and since 1988. The Asian Society for solid state ionics has played a key role in organizing a series of bi-ennial conferences on solid state ionics in different Asian countries. The contributions in this volume were presented at the 10th conference in the series organized by the Postgraduate Institute of Science (PGIS) and the Faculty of Science, University of Peradeniya, Sri Lanka, which coincided with the 10th Anniversary of the Postgraduate Institute of Science (PGIS). The topics cover solid state ionic materials as well as such devices as solid state batteries, fuel cells, sensors, and electrochromic devices. The aspects covered include theoretical studies and modeling, experimental techniques, materials synthesis and characterization, device fabrication and characterization.
Fractal Analyses: Statistical And Methodological Innovations And Best Practices
Author: John G. Holden
Publisher: Frontiers E-books
ISBN: 2889191389
Category :
Languages : en
Pages : 149
Book Description
Many statistical and methodological developments regarding fractal analyses have appeared in the scientific literature since the publication of the seminal texts introducing Fractal Physiology. However, the lion’s share of more recent work is distributed across many outlets and disciplines, including aquatic sciences, biology, computer science, ecology, economics, geology, mathematics, medicine, neuroscience, physics, physiology, psychology, and others. The purpose of this special topic is to solicit submissions regarding fractal and nonlinear statistical techniques from experts that span a wide range of disciplines. The articles will aggregate extensive cross-discipline expertise into comprehensive and broadly applicable resources that will support the application of fractal methods to physiology and related disciplines. The articles will be organized with respect to a continuum defined by the characteristics of the empirical measurements a given analysis is intended to confront. At one end of the continuum are stochastic techniques directed at assessing scale invariant but stochastic data. The next step in the continuum concerns self-affine random fractals and methods directed at systems that entail scale-invariant or 1/f patterns or related patterns of temporal and spatial fluctuation. Analyses directed at (noisy) deterministic signals correspond to the final stage of the continuum that relates the statistical treatments of nonlinear stochastic and deterministic signals. Each section will contain introductory articles, advanced articles, and application articles so readers with any level of expertise with fractal methods will find the special topic accessible and useful. Example stochastic methods include probability density estimation for the inverse power-law, the lognormal, and related distributions. Articles describing statistical issues and tools for discriminating different classes of distributions will be included. An example issue is distinguishing power-law distributions from exponential distributions. Modeling issues and problems regarding statistical mimicking will be addressed as well. The random fractal section will present introductions to several one-dimensional monofractal time-series analysis. Introductory articles will be accompanied by advanced articles that will supply comprehensive treatments of all the key fractal time series methods such as dispersion analysis, detrended fluctuation analysis, power spectral density analysis, and wavelet techniques. Box counting and related techniques will be introduced and described for spatial analyses of two and three dimensional domains as well. Tutorial articles on the execution and interpretation of multifractal analyses will be solicited. There are several standard wavelet based and detrended fluctuation based methods for estimating a multifractal spectrum. We hope to include articles that contrast the different methods and compare their statistical performance as well. The deterministic methods section will include articles that present methods of phase space reconstruction, recurrence analysis, and cross-recurrence analysis. Recurrence methods are widely applicable, but motivated by signals that contain deterministic patterns. Nonetheless recent developments such as the analysis of recurrence interval scaling relations suggest applicability to fractal systems. Several related statistical procedures will be included in this section. Examples include average mutual information statistics and false nearest neighbor analyses.
Publisher: Frontiers E-books
ISBN: 2889191389
Category :
Languages : en
Pages : 149
Book Description
Many statistical and methodological developments regarding fractal analyses have appeared in the scientific literature since the publication of the seminal texts introducing Fractal Physiology. However, the lion’s share of more recent work is distributed across many outlets and disciplines, including aquatic sciences, biology, computer science, ecology, economics, geology, mathematics, medicine, neuroscience, physics, physiology, psychology, and others. The purpose of this special topic is to solicit submissions regarding fractal and nonlinear statistical techniques from experts that span a wide range of disciplines. The articles will aggregate extensive cross-discipline expertise into comprehensive and broadly applicable resources that will support the application of fractal methods to physiology and related disciplines. The articles will be organized with respect to a continuum defined by the characteristics of the empirical measurements a given analysis is intended to confront. At one end of the continuum are stochastic techniques directed at assessing scale invariant but stochastic data. The next step in the continuum concerns self-affine random fractals and methods directed at systems that entail scale-invariant or 1/f patterns or related patterns of temporal and spatial fluctuation. Analyses directed at (noisy) deterministic signals correspond to the final stage of the continuum that relates the statistical treatments of nonlinear stochastic and deterministic signals. Each section will contain introductory articles, advanced articles, and application articles so readers with any level of expertise with fractal methods will find the special topic accessible and useful. Example stochastic methods include probability density estimation for the inverse power-law, the lognormal, and related distributions. Articles describing statistical issues and tools for discriminating different classes of distributions will be included. An example issue is distinguishing power-law distributions from exponential distributions. Modeling issues and problems regarding statistical mimicking will be addressed as well. The random fractal section will present introductions to several one-dimensional monofractal time-series analysis. Introductory articles will be accompanied by advanced articles that will supply comprehensive treatments of all the key fractal time series methods such as dispersion analysis, detrended fluctuation analysis, power spectral density analysis, and wavelet techniques. Box counting and related techniques will be introduced and described for spatial analyses of two and three dimensional domains as well. Tutorial articles on the execution and interpretation of multifractal analyses will be solicited. There are several standard wavelet based and detrended fluctuation based methods for estimating a multifractal spectrum. We hope to include articles that contrast the different methods and compare their statistical performance as well. The deterministic methods section will include articles that present methods of phase space reconstruction, recurrence analysis, and cross-recurrence analysis. Recurrence methods are widely applicable, but motivated by signals that contain deterministic patterns. Nonetheless recent developments such as the analysis of recurrence interval scaling relations suggest applicability to fractal systems. Several related statistical procedures will be included in this section. Examples include average mutual information statistics and false nearest neighbor analyses.
On the Fractal Language of Medicine
Author: Bruce J. West
Publisher: CRC Press
ISBN: 1040089135
Category : Mathematics
Languages : en
Pages : 162
Book Description
On the Fractal Language of Medicine bridges a very clear gap among the knowledge gained over the last 20 years in the physical and life sciences on network theory, organ synchronicity and communication, the understanding of fractal signatures in health and disease and the importance of fractional calculus in integrating these concepts. The authors opine that the field of medicine has not appreciated this hard-won knowledge and has suffered greatly as a result. This book addresses this perceived deficiency by introducing medical researchers, clinicians, residents, first-year medical students and members of allied fields to the work of the so-called hard sciences. It seeks to facilitate effective communication between empiricists and theorists by making interdisciplinary efforts to explain complex mathematical concepts to physicians and, equally important, to elucidate complex medical concepts to physicists or mathematicians. This book will be of great interest to medical students, professionals and academics, as well as students and researchers of applied mathematics, especially those interested in fractional calculus and fractals.
Publisher: CRC Press
ISBN: 1040089135
Category : Mathematics
Languages : en
Pages : 162
Book Description
On the Fractal Language of Medicine bridges a very clear gap among the knowledge gained over the last 20 years in the physical and life sciences on network theory, organ synchronicity and communication, the understanding of fractal signatures in health and disease and the importance of fractional calculus in integrating these concepts. The authors opine that the field of medicine has not appreciated this hard-won knowledge and has suffered greatly as a result. This book addresses this perceived deficiency by introducing medical researchers, clinicians, residents, first-year medical students and members of allied fields to the work of the so-called hard sciences. It seeks to facilitate effective communication between empiricists and theorists by making interdisciplinary efforts to explain complex mathematical concepts to physicians and, equally important, to elucidate complex medical concepts to physicists or mathematicians. This book will be of great interest to medical students, professionals and academics, as well as students and researchers of applied mathematics, especially those interested in fractional calculus and fractals.