Author: David Carfì
Publisher:
ISBN:
Category :
Languages : en
Pages :
Book Description
Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics
Author: David Carfì
Publisher:
ISBN:
Category :
Languages : en
Pages :
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages :
Book Description
Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics II
Author: David Carfi
Publisher: American Mathematical Soc.
ISBN: 0821891480
Category : Mathematics
Languages : en
Pages : 384
Book Description
This volume contains the proceedings from three conferences: the PISRS 2011 International Conference on Analysis, Fractal Geometry, Dynamical Systems and Economics, held November 8-12, 2011 in Messina, Italy; the AMS Special Session on Fractal Geometry in Pure and Applied Mathematics, in memory of Benoît Mandelbrot, held January 4-7, 2012, in Boston, MA; and the AMS Special Session on Geometry and Analysis on Fractal Spaces, held March 3-4, 2012, in Honolulu, HI. Articles in this volume cover fractal geometry and various aspects of dynamical systems in applied mathematics and the applications to other sciences. Also included are articles discussing a variety of connections between these subjects and various areas of physics, engineering, computer science, technology, economics and finance, as well as of mathematics (including probability theory in relation with statistical physics and heat kernel estimates, geometric measure theory, partial differential equations in relation with condensed matter physics, global analysis on non-smooth spaces, the theory of billiards, harmonic analysis and spectral geometry). The companion volume (Contemporary Mathematics, Volume 600) focuses on the more mathematical aspects of fractal geometry and dynamical systems.
Publisher: American Mathematical Soc.
ISBN: 0821891480
Category : Mathematics
Languages : en
Pages : 384
Book Description
This volume contains the proceedings from three conferences: the PISRS 2011 International Conference on Analysis, Fractal Geometry, Dynamical Systems and Economics, held November 8-12, 2011 in Messina, Italy; the AMS Special Session on Fractal Geometry in Pure and Applied Mathematics, in memory of Benoît Mandelbrot, held January 4-7, 2012, in Boston, MA; and the AMS Special Session on Geometry and Analysis on Fractal Spaces, held March 3-4, 2012, in Honolulu, HI. Articles in this volume cover fractal geometry and various aspects of dynamical systems in applied mathematics and the applications to other sciences. Also included are articles discussing a variety of connections between these subjects and various areas of physics, engineering, computer science, technology, economics and finance, as well as of mathematics (including probability theory in relation with statistical physics and heat kernel estimates, geometric measure theory, partial differential equations in relation with condensed matter physics, global analysis on non-smooth spaces, the theory of billiards, harmonic analysis and spectral geometry). The companion volume (Contemporary Mathematics, Volume 600) focuses on the more mathematical aspects of fractal geometry and dynamical systems.
Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics: Fractals in pure mathematics
Author: David Carfi
Publisher: American Mathematical Soc.
ISBN: 0821891472
Category : Mathematics
Languages : en
Pages : 410
Book Description
This volume contains the proceedings from three conferences: the PISRS 2011 International Conference on Analysis, Fractal Geometry, Dynamical Systems and Economics, held November 8-12, 2011 in Messina, Italy; the AMS Special Session on Fractal Geometry in Pure and Applied Mathematics, in memory of Benoit Mandelbrot, held January 4-7, 2012, in Boston, MA; and the AMS Special Session on Geometry and Analysis on Fractal Spaces, held March 3-4, 2012, in Honolulu, HI. Articles in this volume cover fractal geometry (and some aspects of dynamical systems) in pure mathematics. Also included are articles discussing a variety of connections of fractal geometry with other fields of mathematics, including probability theory, number theory, geometric measure theory, partial differential equations, global analysis on non-smooth spaces, harmonic analysis and spectral geometry. The companion volume (Contemporary Mathematics, Volume 601) focuses on applications of fractal geometry and dynamical systems to other sciences, including physics, engineering, computer science, economics, and finance.
Publisher: American Mathematical Soc.
ISBN: 0821891472
Category : Mathematics
Languages : en
Pages : 410
Book Description
This volume contains the proceedings from three conferences: the PISRS 2011 International Conference on Analysis, Fractal Geometry, Dynamical Systems and Economics, held November 8-12, 2011 in Messina, Italy; the AMS Special Session on Fractal Geometry in Pure and Applied Mathematics, in memory of Benoit Mandelbrot, held January 4-7, 2012, in Boston, MA; and the AMS Special Session on Geometry and Analysis on Fractal Spaces, held March 3-4, 2012, in Honolulu, HI. Articles in this volume cover fractal geometry (and some aspects of dynamical systems) in pure mathematics. Also included are articles discussing a variety of connections of fractal geometry with other fields of mathematics, including probability theory, number theory, geometric measure theory, partial differential equations, global analysis on non-smooth spaces, harmonic analysis and spectral geometry. The companion volume (Contemporary Mathematics, Volume 601) focuses on applications of fractal geometry and dynamical systems to other sciences, including physics, engineering, computer science, economics, and finance.
Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics I
Author: David Carfi
Publisher:
ISBN: 9781470410827
Category : Electronic books
Languages : en
Pages : 410
Book Description
Publisher:
ISBN: 9781470410827
Category : Electronic books
Languages : en
Pages : 410
Book Description
Mathematics of Complexity and Dynamical Systems
Author: Robert A. Meyers
Publisher: Springer Science & Business Media
ISBN: 1461418054
Category : Mathematics
Languages : en
Pages : 1885
Book Description
Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.
Publisher: Springer Science & Business Media
ISBN: 1461418054
Category : Mathematics
Languages : en
Pages : 1885
Book Description
Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.
Horizons of Fractal Geometry and Complex Dimensions
Author: Robert G. Niemeyer
Publisher: American Mathematical Soc.
ISBN: 1470435810
Category : Mathematics
Languages : en
Pages : 320
Book Description
This volume contains the proceedings of the 2016 Summer School on Fractal Geometry and Complex Dimensions, in celebration of Michel L. Lapidus's 60th birthday, held from June 21–29, 2016, at California Polytechnic State University, San Luis Obispo, California. The theme of the contributions is fractals and dynamics and content is split into four parts, centered around the following themes: Dimension gaps and the mass transfer principle, fractal strings and complex dimensions, Laplacians on fractal domains and SDEs with fractal noise, and aperiodic order (Delone sets and tilings).
Publisher: American Mathematical Soc.
ISBN: 1470435810
Category : Mathematics
Languages : en
Pages : 320
Book Description
This volume contains the proceedings of the 2016 Summer School on Fractal Geometry and Complex Dimensions, in celebration of Michel L. Lapidus's 60th birthday, held from June 21–29, 2016, at California Polytechnic State University, San Luis Obispo, California. The theme of the contributions is fractals and dynamics and content is split into four parts, centered around the following themes: Dimension gaps and the mass transfer principle, fractal strings and complex dimensions, Laplacians on fractal domains and SDEs with fractal noise, and aperiodic order (Delone sets and tilings).
Fractal Geometry and Stochastics V
Author: Christoph Bandt
Publisher: Birkhäuser
ISBN: 3319186604
Category : Mathematics
Languages : en
Pages : 339
Book Description
This book collects significant contributions from the fifth conference on Fractal Geometry and Stochastics held in Tabarz, Germany, in March 2014. The book is divided into five topical sections: geometric measure theory, self-similar fractals and recurrent structures, analysis and algebra on fractals, multifractal theory, and random constructions. Each part starts with a state-of-the-art survey followed by papers covering a specific aspect of the topic. The authors are leading world experts and present their topics comprehensibly and attractively. Both newcomers and specialists in the field will benefit from this book.
Publisher: Birkhäuser
ISBN: 3319186604
Category : Mathematics
Languages : en
Pages : 339
Book Description
This book collects significant contributions from the fifth conference on Fractal Geometry and Stochastics held in Tabarz, Germany, in March 2014. The book is divided into five topical sections: geometric measure theory, self-similar fractals and recurrent structures, analysis and algebra on fractals, multifractal theory, and random constructions. Each part starts with a state-of-the-art survey followed by papers covering a specific aspect of the topic. The authors are leading world experts and present their topics comprehensibly and attractively. Both newcomers and specialists in the field will benefit from this book.
Analysis and Partial Differential Equations on Manifolds, Fractals and Graphs
Author: Alexander Grigor'yan
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311070076X
Category : Mathematics
Languages : en
Pages : 526
Book Description
The book covers the latest research in the areas of mathematics that deal the properties of partial differential equations and stochastic processes on spaces in connection with the geometry of the underlying space. Written by experts in the field, this book is a valuable tool for the advanced mathematician.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311070076X
Category : Mathematics
Languages : en
Pages : 526
Book Description
The book covers the latest research in the areas of mathematics that deal the properties of partial differential equations and stochastic processes on spaces in connection with the geometry of the underlying space. Written by experts in the field, this book is a valuable tool for the advanced mathematician.
Recent Developments in Algebraic and Combinatorial Aspects of Representation Theory
Author: Vyjayanthi Chari
Publisher: American Mathematical Soc.
ISBN: 0821890379
Category : Mathematics
Languages : en
Pages : 222
Book Description
This volume contains the proceedings of the International Congress of Mathematicians Satellite Conference on Algebraic and Combinatorial Approaches to Representation Theory, held August 12-16, 2010, at the National Institute of Advanced Studies, Bangalore, India, and the follow-up conference held May 18-20, 2012, at the University of California, USA. It contains original research and survey articles on various topics in the theory of representations of Lie algebras, quantum groups and algebraic groups, including crystal bases, categorification, toroidal algebras and their generalisations, vertex algebras, Hecke algebras, Kazhdan-Lusztig bases, $q$-Schur algebras, and Weyl algebras.
Publisher: American Mathematical Soc.
ISBN: 0821890379
Category : Mathematics
Languages : en
Pages : 222
Book Description
This volume contains the proceedings of the International Congress of Mathematicians Satellite Conference on Algebraic and Combinatorial Approaches to Representation Theory, held August 12-16, 2010, at the National Institute of Advanced Studies, Bangalore, India, and the follow-up conference held May 18-20, 2012, at the University of California, USA. It contains original research and survey articles on various topics in the theory of representations of Lie algebras, quantum groups and algebraic groups, including crystal bases, categorification, toroidal algebras and their generalisations, vertex algebras, Hecke algebras, Kazhdan-Lusztig bases, $q$-Schur algebras, and Weyl algebras.
Fractal Zeta Functions and Fractal Drums
Author: Michel L. Lapidus
Publisher: Springer
ISBN: 3319447068
Category : Mathematics
Languages : en
Pages : 685
Book Description
This monograph gives a state-of-the-art and accessible treatment of a new general higher-dimensional theory of complex dimensions, valid for arbitrary bounded subsets of Euclidean spaces, as well as for their natural generalization, relative fractal drums. It provides a significant extension of the existing theory of zeta functions for fractal strings to fractal sets and arbitrary bounded sets in Euclidean spaces of any dimension. Two new classes of fractal zeta functions are introduced, namely, the distance and tube zeta functions of bounded sets, and their key properties are investigated. The theory is developed step-by-step at a slow pace, and every step is well motivated by numerous examples, historical remarks and comments, relating the objects under investigation to other concepts. Special emphasis is placed on the study of complex dimensions of bounded sets and their connections with the notions of Minkowski content and Minkowski measurability, as well as on fractal tube formulas. It is shown for the first time that essential singularities of fractal zeta functions can naturally emerge for various classes of fractal sets and have a significant geometric effect. The theory developed in this book leads naturally to a new definition of fractality, expressed in terms of the existence of underlying geometric oscillations or, equivalently, in terms of the existence of nonreal complex dimensions. The connections to previous extensive work of the first author and his collaborators on geometric zeta functions of fractal strings are clearly explained. Many concepts are discussed for the first time, making the book a rich source of new thoughts and ideas to be developed further. The book contains a large number of open problems and describes many possible directions for further research. The beginning chapters may be used as a part of a course on fractal geometry. The primary readership is aimed at graduate students and researchers working in Fractal Geometry and other related fields, such as Complex Analysis, Dynamical Systems, Geometric Measure Theory, Harmonic Analysis, Mathematical Physics, Analytic Number Theory and the Spectral Theory of Elliptic Differential Operators. The book should be accessible to nonexperts and newcomers to the field.
Publisher: Springer
ISBN: 3319447068
Category : Mathematics
Languages : en
Pages : 685
Book Description
This monograph gives a state-of-the-art and accessible treatment of a new general higher-dimensional theory of complex dimensions, valid for arbitrary bounded subsets of Euclidean spaces, as well as for their natural generalization, relative fractal drums. It provides a significant extension of the existing theory of zeta functions for fractal strings to fractal sets and arbitrary bounded sets in Euclidean spaces of any dimension. Two new classes of fractal zeta functions are introduced, namely, the distance and tube zeta functions of bounded sets, and their key properties are investigated. The theory is developed step-by-step at a slow pace, and every step is well motivated by numerous examples, historical remarks and comments, relating the objects under investigation to other concepts. Special emphasis is placed on the study of complex dimensions of bounded sets and their connections with the notions of Minkowski content and Minkowski measurability, as well as on fractal tube formulas. It is shown for the first time that essential singularities of fractal zeta functions can naturally emerge for various classes of fractal sets and have a significant geometric effect. The theory developed in this book leads naturally to a new definition of fractality, expressed in terms of the existence of underlying geometric oscillations or, equivalently, in terms of the existence of nonreal complex dimensions. The connections to previous extensive work of the first author and his collaborators on geometric zeta functions of fractal strings are clearly explained. Many concepts are discussed for the first time, making the book a rich source of new thoughts and ideas to be developed further. The book contains a large number of open problems and describes many possible directions for further research. The beginning chapters may be used as a part of a course on fractal geometry. The primary readership is aimed at graduate students and researchers working in Fractal Geometry and other related fields, such as Complex Analysis, Dynamical Systems, Geometric Measure Theory, Harmonic Analysis, Mathematical Physics, Analytic Number Theory and the Spectral Theory of Elliptic Differential Operators. The book should be accessible to nonexperts and newcomers to the field.