Author: Casper Storm Hansen
Publisher: Springer Nature
ISBN: 3030885348
Category : Mathematics
Languages : en
Pages : 259
Book Description
This book presents a new nominalistic philosophy of mathematics: semantic conventionalism. Its central thesis is that mathematics should be founded on the human ability to create language – and specifically, the ability to institute conventions for the truth conditions of sentences. This philosophical stance leads to an alternative way of practicing mathematics: instead of “building” objects out of sets, a mathematician should introduce new syntactical sentence types, together with their truth conditions, as he or she develops a theory. Semantic conventionalism is justified first through criticism of Cantorian set theory, intuitionism, logicism, and predicativism; then on its own terms; and finally, exemplified by a detailed reconstruction of arithmetic and real analysis. Also included is a simple solution to the liar paradox and the other paradoxes that have traditionally been recognized as semantic. And since it is argued that mathematics is semantics, this solution also applies to Russell’s paradox and the other mathematical paradoxes of self-reference. In addition to philosophers who care about the metaphysics and epistemology of mathematics or the paradoxes of self-reference, this book should appeal to mathematicians interested in alternative approaches.
Founding Mathematics on Semantic Conventions
Author: Casper Storm Hansen
Publisher: Springer Nature
ISBN: 3030885348
Category : Mathematics
Languages : en
Pages : 259
Book Description
This book presents a new nominalistic philosophy of mathematics: semantic conventionalism. Its central thesis is that mathematics should be founded on the human ability to create language – and specifically, the ability to institute conventions for the truth conditions of sentences. This philosophical stance leads to an alternative way of practicing mathematics: instead of “building” objects out of sets, a mathematician should introduce new syntactical sentence types, together with their truth conditions, as he or she develops a theory. Semantic conventionalism is justified first through criticism of Cantorian set theory, intuitionism, logicism, and predicativism; then on its own terms; and finally, exemplified by a detailed reconstruction of arithmetic and real analysis. Also included is a simple solution to the liar paradox and the other paradoxes that have traditionally been recognized as semantic. And since it is argued that mathematics is semantics, this solution also applies to Russell’s paradox and the other mathematical paradoxes of self-reference. In addition to philosophers who care about the metaphysics and epistemology of mathematics or the paradoxes of self-reference, this book should appeal to mathematicians interested in alternative approaches.
Publisher: Springer Nature
ISBN: 3030885348
Category : Mathematics
Languages : en
Pages : 259
Book Description
This book presents a new nominalistic philosophy of mathematics: semantic conventionalism. Its central thesis is that mathematics should be founded on the human ability to create language – and specifically, the ability to institute conventions for the truth conditions of sentences. This philosophical stance leads to an alternative way of practicing mathematics: instead of “building” objects out of sets, a mathematician should introduce new syntactical sentence types, together with their truth conditions, as he or she develops a theory. Semantic conventionalism is justified first through criticism of Cantorian set theory, intuitionism, logicism, and predicativism; then on its own terms; and finally, exemplified by a detailed reconstruction of arithmetic and real analysis. Also included is a simple solution to the liar paradox and the other paradoxes that have traditionally been recognized as semantic. And since it is argued that mathematics is semantics, this solution also applies to Russell’s paradox and the other mathematical paradoxes of self-reference. In addition to philosophers who care about the metaphysics and epistemology of mathematics or the paradoxes of self-reference, this book should appeal to mathematicians interested in alternative approaches.
Founding Mathematics on Semantic Conventions
Author: Casper Storm Hansen
Publisher:
ISBN: 9783030885359
Category : Analysis (Mathematics).
Languages : en
Pages :
Book Description
1. Introduction -- 2. Classical Mathematics and Plenitudinous Combinatorialism -- 3 Intuitionism and Choice Sequences -- 4. From Logicism to Predicativism -- 5. Conventional Truth -- 6. Semantic Conventionalism for Mathematics -- 7. A Convention for a Type-free Language -- 8. Basic Mathematics -- 9. Real Analysis -- 10. Possibility -- References -- Index of symbols -- General index.
Publisher:
ISBN: 9783030885359
Category : Analysis (Mathematics).
Languages : en
Pages :
Book Description
1. Introduction -- 2. Classical Mathematics and Plenitudinous Combinatorialism -- 3 Intuitionism and Choice Sequences -- 4. From Logicism to Predicativism -- 5. Conventional Truth -- 6. Semantic Conventionalism for Mathematics -- 7. A Convention for a Type-free Language -- 8. Basic Mathematics -- 9. Real Analysis -- 10. Possibility -- References -- Index of symbols -- General index.
Language and Philosophical Problems
Author: Sören Stenlund
Publisher: Taylor & Francis
ISBN: 1134952252
Category : Philosophy
Languages : en
Pages : 240
Book Description
Language and Philosophical Problems investigates problems about mind, meaning and mathematics rooted in preconceptions of language. It deals in particular with problems which are connected with our tendency to be misled by certain prevailing views and preconceptions about language. Philosophical claims made by theorists of meaning are scrutinized and shown to be connected with common views about the nature of certain mathematical notions and methods. Drawing in particular on Wittgenstein's ideas, Sren Stenlund demonstrates a strategy for tracing out and resolving conceptual and philosophical problems. By a critical examination of examples from different areas of philosophy, he shows that many problems arise through the transgression of the limits of the use of technical concepts and formal methods. Many prima facie different kinds of problems are shown to have common roots, and should thus be dealt and resolved together. Such an approach is usually prevented by the influence of traditional philosophical terminology and classification. The results of this investigation make it clear that the received ways of subdividing the subject matter of philosophy often conceal the roots of the problem.
Publisher: Taylor & Francis
ISBN: 1134952252
Category : Philosophy
Languages : en
Pages : 240
Book Description
Language and Philosophical Problems investigates problems about mind, meaning and mathematics rooted in preconceptions of language. It deals in particular with problems which are connected with our tendency to be misled by certain prevailing views and preconceptions about language. Philosophical claims made by theorists of meaning are scrutinized and shown to be connected with common views about the nature of certain mathematical notions and methods. Drawing in particular on Wittgenstein's ideas, Sren Stenlund demonstrates a strategy for tracing out and resolving conceptual and philosophical problems. By a critical examination of examples from different areas of philosophy, he shows that many problems arise through the transgression of the limits of the use of technical concepts and formal methods. Many prima facie different kinds of problems are shown to have common roots, and should thus be dealt and resolved together. Such an approach is usually prevented by the influence of traditional philosophical terminology and classification. The results of this investigation make it clear that the received ways of subdividing the subject matter of philosophy often conceal the roots of the problem.
The Philosophy of Mathematics Education
Author: Paul Ernest
Publisher: Routledge
ISBN: 1135387540
Category : Education
Languages : en
Pages : 344
Book Description
Although many agree that all teaching rests on a theory of knowledge, there has been no in-depth exploration of the implications of the philosophy of mathematics for education. This is Paul Ernest's aim. Building on the work of Lakatos and Wittgenstein it challenges the prevalent notion that mathematical knowledge is certain, absolute and neutral, and offers instead an account of mathematics as a social construction. This has profound educational implications for social issues, including gender, race and multiculturalism; for pedagogy, including investigations and problem solving; and challenges hierarchical views of mathematics, learning and ability. Beyond this, the book offers a well-grounded model of five educational ideologies, each with its own epistemology, values, aims and social group of adherents. An analysis of the impact of these groups on the National Curriculum results in a powerful critique, revealing the questionable assumptions, values and interests upon which it rests. The book finishes on an optimistic note, arguing that pedagogy, left unspecified by the National Curriculum, is the way to achieve the radical aims of educating confident problem posers and solvers who are able to critically evaluate the social uses of mathematics.
Publisher: Routledge
ISBN: 1135387540
Category : Education
Languages : en
Pages : 344
Book Description
Although many agree that all teaching rests on a theory of knowledge, there has been no in-depth exploration of the implications of the philosophy of mathematics for education. This is Paul Ernest's aim. Building on the work of Lakatos and Wittgenstein it challenges the prevalent notion that mathematical knowledge is certain, absolute and neutral, and offers instead an account of mathematics as a social construction. This has profound educational implications for social issues, including gender, race and multiculturalism; for pedagogy, including investigations and problem solving; and challenges hierarchical views of mathematics, learning and ability. Beyond this, the book offers a well-grounded model of five educational ideologies, each with its own epistemology, values, aims and social group of adherents. An analysis of the impact of these groups on the National Curriculum results in a powerful critique, revealing the questionable assumptions, values and interests upon which it rests. The book finishes on an optimistic note, arguing that pedagogy, left unspecified by the National Curriculum, is the way to achieve the radical aims of educating confident problem posers and solvers who are able to critically evaluate the social uses of mathematics.
Mathematical Reviews
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 820
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 820
Book Description
A Book of Set Theory
Author: Charles C Pinter
Publisher: Courier Corporation
ISBN: 0486497089
Category : Mathematics
Languages : en
Pages : 259
Book Description
"This accessible approach to set theory for upper-level undergraduates poses rigorous but simple arguments. Each definition is accompanied by commentary that motivates and explains new concepts. A historical introduction is followed by discussions of classes and sets, functions, natural and cardinal numbers, the arithmetic of ordinal numbers, and related topics. 1971 edition with new material by the author"--
Publisher: Courier Corporation
ISBN: 0486497089
Category : Mathematics
Languages : en
Pages : 259
Book Description
"This accessible approach to set theory for upper-level undergraduates poses rigorous but simple arguments. Each definition is accompanied by commentary that motivates and explains new concepts. A historical introduction is followed by discussions of classes and sets, functions, natural and cardinal numbers, the arithmetic of ordinal numbers, and related topics. 1971 edition with new material by the author"--
The Formal Semantics of Programming Languages
Author: Glynn Winskel
Publisher: MIT Press
ISBN: 9780262731034
Category : Computers
Languages : en
Pages : 388
Book Description
The Formal Semantics of Programming Languages provides the basic mathematical techniques necessary for those who are beginning a study of the semantics and logics of programming languages. These techniques will allow students to invent, formalize, and justify rules with which to reason about a variety of programming languages. Although the treatment is elementary, several of the topics covered are drawn from recent research, including the vital area of concurency. The book contains many exercises ranging from simple to miniprojects.Starting with basic set theory, structural operational semantics is introduced as a way to define the meaning of programming languages along with associated proof techniques. Denotational and axiomatic semantics are illustrated on a simple language of while-programs, and fall proofs are given of the equivalence of the operational and denotational semantics and soundness and relative completeness of the axiomatic semantics. A proof of Godel's incompleteness theorem, which emphasizes the impossibility of achieving a fully complete axiomatic semantics, is included. It is supported by an appendix providing an introduction to the theory of computability based on while-programs. Following a presentation of domain theory, the semantics and methods of proof for several functional languages are treated. The simplest language is that of recursion equations with both call-by-value and call-by-name evaluation. This work is extended to lan guages with higher and recursive types, including a treatment of the eager and lazy lambda-calculi. Throughout, the relationship between denotational and operational semantics is stressed, and the proofs of the correspondence between the operation and denotational semantics are provided. The treatment of recursive types - one of the more advanced parts of the book - relies on the use of information systems to represent domains. The book concludes with a chapter on parallel programming languages, accompanied by a discussion of methods for specifying and verifying nondeterministic and parallel programs.
Publisher: MIT Press
ISBN: 9780262731034
Category : Computers
Languages : en
Pages : 388
Book Description
The Formal Semantics of Programming Languages provides the basic mathematical techniques necessary for those who are beginning a study of the semantics and logics of programming languages. These techniques will allow students to invent, formalize, and justify rules with which to reason about a variety of programming languages. Although the treatment is elementary, several of the topics covered are drawn from recent research, including the vital area of concurency. The book contains many exercises ranging from simple to miniprojects.Starting with basic set theory, structural operational semantics is introduced as a way to define the meaning of programming languages along with associated proof techniques. Denotational and axiomatic semantics are illustrated on a simple language of while-programs, and fall proofs are given of the equivalence of the operational and denotational semantics and soundness and relative completeness of the axiomatic semantics. A proof of Godel's incompleteness theorem, which emphasizes the impossibility of achieving a fully complete axiomatic semantics, is included. It is supported by an appendix providing an introduction to the theory of computability based on while-programs. Following a presentation of domain theory, the semantics and methods of proof for several functional languages are treated. The simplest language is that of recursion equations with both call-by-value and call-by-name evaluation. This work is extended to lan guages with higher and recursive types, including a treatment of the eager and lazy lambda-calculi. Throughout, the relationship between denotational and operational semantics is stressed, and the proofs of the correspondence between the operation and denotational semantics are provided. The treatment of recursive types - one of the more advanced parts of the book - relies on the use of information systems to represent domains. The book concludes with a chapter on parallel programming languages, accompanied by a discussion of methods for specifying and verifying nondeterministic and parallel programs.
Mathematical Methods in Linguistics
Author: Barbara B.H. Partee
Publisher: Springer Science & Business Media
ISBN: 9789027722454
Category : Language Arts & Disciplines
Languages : en
Pages : 692
Book Description
Elementary set theory accustoms the students to mathematical abstraction, includes the standard constructions of relations, functions, and orderings, and leads to a discussion of the various orders of infinity. The material on logic covers not only the standard statement logic and first-order predicate logic but includes an introduction to formal systems, axiomatization, and model theory. The section on algebra is presented with an emphasis on lattices as well as Boolean and Heyting algebras. Background for recent research in natural language semantics includes sections on lambda-abstraction and generalized quantifiers. Chapters on automata theory and formal languages contain a discussion of languages between context-free and context-sensitive and form the background for much current work in syntactic theory and computational linguistics. The many exercises not only reinforce basic skills but offer an entry to linguistic applications of mathematical concepts. For upper-level undergraduate students and graduate students in theoretical linguistics, computer-science students with interests in computational linguistics, logic programming and artificial intelligence, mathematicians and logicians with interests in linguistics and the semantics of natural language.
Publisher: Springer Science & Business Media
ISBN: 9789027722454
Category : Language Arts & Disciplines
Languages : en
Pages : 692
Book Description
Elementary set theory accustoms the students to mathematical abstraction, includes the standard constructions of relations, functions, and orderings, and leads to a discussion of the various orders of infinity. The material on logic covers not only the standard statement logic and first-order predicate logic but includes an introduction to formal systems, axiomatization, and model theory. The section on algebra is presented with an emphasis on lattices as well as Boolean and Heyting algebras. Background for recent research in natural language semantics includes sections on lambda-abstraction and generalized quantifiers. Chapters on automata theory and formal languages contain a discussion of languages between context-free and context-sensitive and form the background for much current work in syntactic theory and computational linguistics. The many exercises not only reinforce basic skills but offer an entry to linguistic applications of mathematical concepts. For upper-level undergraduate students and graduate students in theoretical linguistics, computer-science students with interests in computational linguistics, logic programming and artificial intelligence, mathematicians and logicians with interests in linguistics and the semantics of natural language.
Mathematical Writing
Author: Donald E. Knuth
Publisher: Cambridge University Press
ISBN: 9780883850633
Category : Language Arts & Disciplines
Languages : en
Pages : 132
Book Description
This book will help those wishing to teach a course in technical writing, or who wish to write themselves.
Publisher: Cambridge University Press
ISBN: 9780883850633
Category : Language Arts & Disciplines
Languages : en
Pages : 132
Book Description
This book will help those wishing to teach a course in technical writing, or who wish to write themselves.
Incompleteness
Author: Rebecca Goldstein
Publisher: W. W. Norton & Company
ISBN: 0393327604
Category : Biography & Autobiography
Languages : en
Pages : 299
Book Description
"An introduction to the life and thought of Kurt Gödel, who transformed our conception of math forever"--Provided by publisher.
Publisher: W. W. Norton & Company
ISBN: 0393327604
Category : Biography & Autobiography
Languages : en
Pages : 299
Book Description
"An introduction to the life and thought of Kurt Gödel, who transformed our conception of math forever"--Provided by publisher.