Foundations of the Complex Variable Boundary Element Method

Foundations of the Complex Variable Boundary Element Method PDF Author: Theodore Hromadka
Publisher: Springer Science & Business Media
ISBN: 3319059548
Category : Technology & Engineering
Languages : en
Pages : 86

Get Book Here

Book Description
This book explains and examines the theoretical underpinnings of the Complex Variable Boundary Element Method (CVBEM) as applied to higher dimensions, providing the reader with the tools for extending and using the CVBEM in various applications. Relevant mathematics and principles are assembled and the reader is guided through the key topics necessary for an understanding of the development of the CVBEM in both the usual two as well as three or higher dimensions. In addition to this, problems are provided that build upon the material presented. The Complex Variable Boundary Element Method (CVBEM) is an approximation method useful for solving problems involving the Laplace equation in two dimensions. It has been shown to be a useful modelling technique for solving two-dimensional problems involving the Laplace or Poisson equations on arbitrary domains. The CVBEM has recently been extended to 3 or higher spatial dimensions, which enables the precision of the CVBEM in solving the Laplace equation to be now available for multiple dimensions. The mathematical underpinnings of the CVBEM, as well as the extension to higher dimensions, involve several areas of applied and pure mathematics including Banach Spaces, Hilbert Spaces, among other topics. This book is intended for applied mathematics graduate students, engineering students or practitioners, developers of industrial applications involving the Laplace or Poisson equations and developers of computer modelling applications.

The Complex Variable Boundary Element Method

The Complex Variable Boundary Element Method PDF Author: T. V. Hromadka
Publisher: Springer Science & Business Media
ISBN: 3642823610
Category : Mathematics
Languages : en
Pages : 256

Get Book Here

Book Description
The Complex Variable Boundary Element Method or CVBEM is a generalization of the Cauchy integral formula into a boundary integral equation method or BIEM. This generalization allows an immediate and extremely valuable transfer of the modeling techniques used in real variable boundary integral equation methods (or boundary element methods) to the CVBEM. Consequently, modeling techniques for dissimilar materials, anisotropic materials, and time advancement, can be directly applied without modification to the CVBEM. An extremely useful feature offered by the CVBEM is that the pro duced approximation functions are analytic within the domain enclosed by the problem boundary and, therefore, exactly satisfy the two-dimensional Laplace equation throughout the problem domain. Another feature of the CVBEM is the integrations of the boundary integrals along each boundary element are solved exactly without the need for numerical integration. Additionally, the error analysis of the CVBEM approximation functions is workable by the easy-to-understand concept of relative error. A sophistication of the relative error analysis is the generation of an approximative boundary upon which the CVBEM approximation function exactly solves the boundary conditions of the boundary value problem' (of the Laplace equation), and the goodness of approximation is easily seen as a closeness-of-fit between the approximative and true problem boundaries.

The Complex Variable Boundary Element Method in Engineering Analysis

The Complex Variable Boundary Element Method in Engineering Analysis PDF Author: Theodore V. Hromadka
Publisher: Springer Science & Business Media
ISBN: 1461246601
Category : Medical
Languages : en
Pages : 397

Get Book Here

Book Description
The Complex Variable Boundary Element Method (CVBEM) has emerged as a new and effective modeling method in the field of computational mechanics and hydraulics. The CVBEM is a generalization of the Cauchy integral formula into a boundary integral equation method. The model ing approach by boundary integration, the use of complex variables for two-dimensional potential problems, and the adaptability to now-popular microcomputers are among the factors that make this technique easy to learn, simple to operate, practical for modeling, and efficient in simulating various physical processes. Many of the CVBEM concepts and notions may be derived from the Analytic Function Method (AFM) presented in van der Veer (1978). The AFM served as the starting point for the generalization of the CVBEM theory which was developed during the first author's research engagement (1979 through 1981) at the University of California, Irvine. The growth and expansion of the CVBEM were subsequently nurtured at the U. S. Geological Survey, where keen interest and much activity in numerical modeling and computational mechanics-and-hydraulics are prevalent. Inclusion of the CVBEM research program in Survey's computational-hydraulics projects, brings the modeling researcher more uniform aspects of numerical mathematics in engineering and scientific problems, not to mention its (CVBEM) practicality and usefulness in the hydrologic investigations. This book is intended to introduce the CVBEM to engineers and scientists with its basic theory, underlying mathematics, computer algorithm, error analysis schemes, model adjustment procedures, and application examples.

Foundations of the Complex Variable Boundary Element Method

Foundations of the Complex Variable Boundary Element Method PDF Author: Theodore Hromadka
Publisher:
ISBN: 9783319059556
Category :
Languages : en
Pages : 94

Get Book Here

Book Description


Excel in Complex Variables with the Complex Variable Boundary Element Method

Excel in Complex Variables with the Complex Variable Boundary Element Method PDF Author: B. D. Wilkins
Publisher: WIT Press
ISBN: 1784664510
Category : Mathematics
Languages : en
Pages : 290

Get Book Here

Book Description
Using the familiar software Microsoft ® Excel, this book examines the applications of complex variables. Implementation of the included problems in Excel eliminates the “black box” nature of more advanced computer software and programming languages and therefore the reader has the chance to become more familiar with the underlying mathematics of the complex variable problems. This book consists of two parts. In Part I, several topics are covered that one would expect to find in an introductory text on complex variables. These topics include an overview of complex numbers, functions of a complex variable, and the Cauchy integral formula. In particular, attention is given to the study of analytic complex variable functions. This attention is warranted because of the property that the real and imaginary parts of an analytic complex variable function can be used to solve the Laplace partial differential equation (PDE). Laplace's equation is ubiquitous throughout science and engineering as it can be used to model the steady-state conditions of several important transport processes including heat transfer, soil-water flow, electrostatics, and ideal fluid flow, among others. In Part II, a specialty application of complex variables known as the Complex Variable Boundary Element Method (CVBEM) is examined. CVBEM is a numerical method used for solving boundary value problems governed by Laplace's equation. This part contains a detailed description of the CVBEM and a guide through each step of constructing two CVBEM programs in Excel. The writing of these programs is the culminating event of the book. Students of complex variables and anyone with an interest in a novel method for approximating potential functions using the principles of complex variables are the intended audience for this book. The Microsoft Excel applications (including simple programs as well as the CVBEM program) covered will also be of interest in the industry, as these programs are accessible to anybody with Microsoft Office.

Advances in the Complex Variable Boundary Element Method

Advances in the Complex Variable Boundary Element Method PDF Author: Theodore V. Hromadka
Publisher: Springer Science & Business Media
ISBN: 144713611X
Category : Technology & Engineering
Languages : en
Pages : 402

Get Book Here

Book Description
As well as describing the extremely useful applications of the CVBEM, the authors explain its mathematical background -- vital to understanding the subject as a whole. This is the most comprehensive book on the subject, bringing together ten years of work and can boast the latest news in CVBEM technology. It is thus of particular interest to those concerned with solving technical engineering problems -- while scientists, graduate students, computer programmers and those working in industry will all find the book helpful.

Complex Analysis for Practical Engineering

Complex Analysis for Practical Engineering PDF Author: Kozo Sato
Publisher: Springer
ISBN: 3319130633
Category : Technology & Engineering
Languages : en
Pages : 312

Get Book Here

Book Description
Maximizing reader insights into the fundamentals of complex analysis, and providing complete instructions on how to construct and use mathematical tools to solve engineering problems in potential theory, this book covers complex analysis in the context of potential flow problems. The basic concepts and methodologies covered are easily extended to other problems of potential theory. Featuring case studies and problems that aid readers understanding of the key topics and of their application to practical engineering problems, this book is suitable as a guide for engineering practitioners. The complex analysis problems discussed in this book will prove useful in solving practical problems in a variety of engineering disciplines, including flow dynamics, electrostatics, heat conduction and gravity fields.

The Best Approximation Method in Computational Mechanics

The Best Approximation Method in Computational Mechanics PDF Author: Theodore V., II Hromadka
Publisher: Springer Science & Business Media
ISBN: 1447120205
Category : Technology & Engineering
Languages : en
Pages : 259

Get Book Here

Book Description
With the overwhelming use of computers in engineering, science and physics, the approximate solution of complex mathematical systems of equations is almost commonplace. The Best Approximation Method unifies many of the numerical methods used in computational mechanics. Nevertheless, despite the vast quantities of synthetic data there is still some doubt concerning the validity and accuracy of these approximations. This publication assists the computer modeller in his search for the best approximation by presenting functional analysis concepts. Computer programs are provided which can be used by readers with FORTRAN capability. The classes of problems examined include engineering applications, applied mathematics, numerical analysis and computational mechanics. The Best Approximation Method in Computational Mechanics serves as an introduction to functional analysis and mathematical analysis of computer modelling algorithms. It makes computer modellers aware of already established principles and results assembled in functional analysis.

Green's Functions and Boundary Element Analysis for Modeling of Mechanical Behavior of Advanced Materials

Green's Functions and Boundary Element Analysis for Modeling of Mechanical Behavior of Advanced Materials PDF Author: J. R. Berger
Publisher: DIANE Publishing
ISBN: 0788148184
Category :
Languages : en
Pages : 174

Get Book Here

Book Description
Demonstrates the potential of Green's functions & boundary element methods in solving a broad range of practical materials science problems. Papers include: Accurate Discretization of Integral Operators, Boundary Element Analysis of Bimaterials Using Anisotropic Elastic Green's Functions, Mechanical Properties of Metal-Matrix Composites, Approximate Operators for Boundary Integral Equations in Transient Elastodynamics, Simulation of the Electrochemical Machining Process Using a 2D Fundamental Singular Solution, Elastic Green's Functions for Anisotropic Solids, & more. Charts & tables.

Boundary Elements and Other Mesh Reduction Methods Twenty-eight

Boundary Elements and Other Mesh Reduction Methods Twenty-eight PDF Author: C. A. Brebbia
Publisher: WIT Press
ISBN: 1845641647
Category : Mathematics
Languages : en
Pages : 361

Get Book Here

Book Description
This volume contains papers from the World Conference on Boundary Elements and other Mesh Reduction Methods, an internationally recognized forum for the dissemination of the latest advances on Mesh Reduction Techniques and their applications in sciences and engineering. The book publishes articles dealing with computational issues and software developments in addition to those of a more theoretical nature. Engineers and scientists within the areas of numerical analysis, boundary elements and meshless methods will find the text invaluable. Topics include: Advances in Mesh Reduction Methods; Meshless Techniques; Advanced Formulations; Dual Reciprocity Method; Modified Trefftz Method; Fundamental Solution Method; Damage Mechanics and Fracture; Advanced Structural Applications; Dynamics and Vibrations; Material Characterization; Acoustics; Electrical Engineering and Electromagnetics; Heat and Mass Transfer; Fluid Mechanics Problems; Wave Propagation; Inverse Problems and Computational Techniques.