Author: A. Sernadas
Publisher:
ISBN: 9781904987888
Category : Computational complexity
Languages : en
Pages : 0
Book Description
The book provides a self-contained introduction to mathematical logic and computability theory for students of mathematics or computer science. It is organized around the failures and successes of Hilbert's programme for the formalization of Mathematics. It is widely known that the programme failed with Gödel's incompleteness theorems and related negative results about arithmetic. Unfortunately, the positive outcomes of the programme are less well known, even among mathematicians. The book covers key successes, like Gödel's proof of the completeness of first-order logic, Gentzen's proof of its consistency by purely symbolic means, and the decidability of a couple of useful theories. The book also tries to convey the message that Hilbert's programme made a significant contribution to the advent of the computer as it is nowadays understood and, thus, to the latest industrial revolution. Part I of the book addresses Hilbert's programme and computability. Part II presents first-order logic, including Gödel's completeness theorem and Gentzen's consistency theorem. Part III is focused on arithmetic, representability of computable maps, Gödel's incompleteness theorems and decidability of Presburger arithmetic. Part IV provides detailed answers to selected exercises. The book can be used at late undergraduate level or early graduate level. An undergraduate course would concentrate on Parts I and II, leaving out the Gentzen calculus, and sketching the way to the 1st incompleteness theorem. A more advanced course might skip early material already known to the students and concentrate on the positive and negative results of Hilbert's programme, thus covering Gentzen's proof of consistency and Part III in full.
Foundations of Logic and Theory of Computation
Author: A. Sernadas
Publisher:
ISBN: 9781904987888
Category : Computational complexity
Languages : en
Pages : 0
Book Description
The book provides a self-contained introduction to mathematical logic and computability theory for students of mathematics or computer science. It is organized around the failures and successes of Hilbert's programme for the formalization of Mathematics. It is widely known that the programme failed with Gödel's incompleteness theorems and related negative results about arithmetic. Unfortunately, the positive outcomes of the programme are less well known, even among mathematicians. The book covers key successes, like Gödel's proof of the completeness of first-order logic, Gentzen's proof of its consistency by purely symbolic means, and the decidability of a couple of useful theories. The book also tries to convey the message that Hilbert's programme made a significant contribution to the advent of the computer as it is nowadays understood and, thus, to the latest industrial revolution. Part I of the book addresses Hilbert's programme and computability. Part II presents first-order logic, including Gödel's completeness theorem and Gentzen's consistency theorem. Part III is focused on arithmetic, representability of computable maps, Gödel's incompleteness theorems and decidability of Presburger arithmetic. Part IV provides detailed answers to selected exercises. The book can be used at late undergraduate level or early graduate level. An undergraduate course would concentrate on Parts I and II, leaving out the Gentzen calculus, and sketching the way to the 1st incompleteness theorem. A more advanced course might skip early material already known to the students and concentrate on the positive and negative results of Hilbert's programme, thus covering Gentzen's proof of consistency and Part III in full.
Publisher:
ISBN: 9781904987888
Category : Computational complexity
Languages : en
Pages : 0
Book Description
The book provides a self-contained introduction to mathematical logic and computability theory for students of mathematics or computer science. It is organized around the failures and successes of Hilbert's programme for the formalization of Mathematics. It is widely known that the programme failed with Gödel's incompleteness theorems and related negative results about arithmetic. Unfortunately, the positive outcomes of the programme are less well known, even among mathematicians. The book covers key successes, like Gödel's proof of the completeness of first-order logic, Gentzen's proof of its consistency by purely symbolic means, and the decidability of a couple of useful theories. The book also tries to convey the message that Hilbert's programme made a significant contribution to the advent of the computer as it is nowadays understood and, thus, to the latest industrial revolution. Part I of the book addresses Hilbert's programme and computability. Part II presents first-order logic, including Gödel's completeness theorem and Gentzen's consistency theorem. Part III is focused on arithmetic, representability of computable maps, Gödel's incompleteness theorems and decidability of Presburger arithmetic. Part IV provides detailed answers to selected exercises. The book can be used at late undergraduate level or early graduate level. An undergraduate course would concentrate on Parts I and II, leaving out the Gentzen calculus, and sketching the way to the 1st incompleteness theorem. A more advanced course might skip early material already known to the students and concentrate on the positive and negative results of Hilbert's programme, thus covering Gentzen's proof of consistency and Part III in full.
Foundations of Computation
Author: Carol Critchlow
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 256
Book Description
Foundations of Computation is a free textbook for a one-semester course in theoretical computer science. It has been used for several years in a course at Hobart and William Smith Colleges. The course has no prerequisites other than introductory computer programming. The first half of the course covers material on logic, sets, and functions that would often be taught in a course in discrete mathematics. The second part covers material on automata, formal languages and grammar that would ordinarily be encountered in an upper level course in theoretical computer science.
Publisher:
ISBN:
Category : Computers
Languages : en
Pages : 256
Book Description
Foundations of Computation is a free textbook for a one-semester course in theoretical computer science. It has been used for several years in a course at Hobart and William Smith Colleges. The course has no prerequisites other than introductory computer programming. The first half of the course covers material on logic, sets, and functions that would often be taught in a course in discrete mathematics. The second part covers material on automata, formal languages and grammar that would ordinarily be encountered in an upper level course in theoretical computer science.
Foundations of Logic Programming
Author: J. W. Lloyd
Publisher: Springer Science & Business Media
ISBN: 3642968260
Category : Computers
Languages : en
Pages : 135
Book Description
This book gives an account oC the mathematical Coundations oC logic programming. I have attempted to make the book selC-contained by including prooCs of almost all the results needed. The only prerequisites are some Camiliarity with a logic programming language, such as PROLOG, and a certain mathematical maturity. For example, the reader should be Camiliar with induction arguments and be comCortable manipulating logical expressions. Also the last chapter assumes some acquaintance with the elementary aspects of metric spaces, especially properties oC continuous mappings and compact spaces. Chapter 1 presents the declarative aspects of logic programming. This chapter contains the basic material Crom first order logic and fixpoint theory which will be required. The main concepts discussed here are those oC a logic program, model, correct answer substitution and fixpoint. Also the unification algorithm is discussed in some detail. Chapter 2 is concerned with the procedural semantics oC logic programs. The declarative concepts are implemented by means oC a specialized Corm oC resolution, called SLD-resolution. The main results of this chapter concern the soundness and completeness oC SLD-resolution and the independence oC the computation rule. We also discuss the implications of omitting the occur check from PROLOG implementations. Chapter 3 discusses negation. Current PROLOG systems implement a form of negation by means of the negation as failure rule. The main results of this chapter are the soundness and completeness oC the negation as failure rule.
Publisher: Springer Science & Business Media
ISBN: 3642968260
Category : Computers
Languages : en
Pages : 135
Book Description
This book gives an account oC the mathematical Coundations oC logic programming. I have attempted to make the book selC-contained by including prooCs of almost all the results needed. The only prerequisites are some Camiliarity with a logic programming language, such as PROLOG, and a certain mathematical maturity. For example, the reader should be Camiliar with induction arguments and be comCortable manipulating logical expressions. Also the last chapter assumes some acquaintance with the elementary aspects of metric spaces, especially properties oC continuous mappings and compact spaces. Chapter 1 presents the declarative aspects of logic programming. This chapter contains the basic material Crom first order logic and fixpoint theory which will be required. The main concepts discussed here are those oC a logic program, model, correct answer substitution and fixpoint. Also the unification algorithm is discussed in some detail. Chapter 2 is concerned with the procedural semantics oC logic programs. The declarative concepts are implemented by means oC a specialized Corm oC resolution, called SLD-resolution. The main results of this chapter concern the soundness and completeness oC SLD-resolution and the independence oC the computation rule. We also discuss the implications of omitting the occur check from PROLOG implementations. Chapter 3 discusses negation. Current PROLOG systems implement a form of negation by means of the negation as failure rule. The main results of this chapter are the soundness and completeness oC the negation as failure rule.
Foundations of Logic and Mathematics
Author: Yves Nievergelt
Publisher: Springer Science & Business Media
ISBN: 146120125X
Category : Mathematics
Languages : en
Pages : 425
Book Description
This modern introduction to the foundations of logic and mathematics not only takes theory into account, but also treats in some detail applications that have a substantial impact on everyday life (loans and mortgages, bar codes, public-key cryptography). A first college-level introduction to logic, proofs, sets, number theory, and graph theory, and an excellent self-study reference and resource for instructors.
Publisher: Springer Science & Business Media
ISBN: 146120125X
Category : Mathematics
Languages : en
Pages : 425
Book Description
This modern introduction to the foundations of logic and mathematics not only takes theory into account, but also treats in some detail applications that have a substantial impact on everyday life (loans and mortgages, bar codes, public-key cryptography). A first college-level introduction to logic, proofs, sets, number theory, and graph theory, and an excellent self-study reference and resource for instructors.
Foundations of Computing
Author: Thierry Scheurer
Publisher: Addison-Wesley Longman
ISBN:
Category : Computers
Languages : en
Pages : 700
Book Description
Written for professionals learning the field of discrete mathematics, this book provides the necessary foundations of computer science without requiring excessive mathematical prerequisites. Using a balanced approach of theory and examples, software engineers will find it a refreshing treatment of applications in programming.
Publisher: Addison-Wesley Longman
ISBN:
Category : Computers
Languages : en
Pages : 700
Book Description
Written for professionals learning the field of discrete mathematics, this book provides the necessary foundations of computer science without requiring excessive mathematical prerequisites. Using a balanced approach of theory and examples, software engineers will find it a refreshing treatment of applications in programming.
Handbook of Computability Theory
Author: E.R. Griffor
Publisher: Elsevier
ISBN: 0080533043
Category : Mathematics
Languages : en
Pages : 741
Book Description
The chapters of this volume all have their own level of presentation. The topics have been chosen based on the active research interest associated with them. Since the interest in some topics is older than that in others, some presentations contain fundamental definitions and basic results while others relate very little of the elementary theory behind them and aim directly toward an exposition of advanced results. Presentations of the latter sort are in some cases restricted to a short survey of recent results (due to the complexity of the methods and proofs themselves). Hence the variation in level of presentation from chapter to chapter only reflects the conceptual situation itself. One example of this is the collective efforts to develop an acceptable theory of computation on the real numbers. The last two decades has seen at least two new definitions of effective operations on the real numbers.
Publisher: Elsevier
ISBN: 0080533043
Category : Mathematics
Languages : en
Pages : 741
Book Description
The chapters of this volume all have their own level of presentation. The topics have been chosen based on the active research interest associated with them. Since the interest in some topics is older than that in others, some presentations contain fundamental definitions and basic results while others relate very little of the elementary theory behind them and aim directly toward an exposition of advanced results. Presentations of the latter sort are in some cases restricted to a short survey of recent results (due to the complexity of the methods and proofs themselves). Hence the variation in level of presentation from chapter to chapter only reflects the conceptual situation itself. One example of this is the collective efforts to develop an acceptable theory of computation on the real numbers. The last two decades has seen at least two new definitions of effective operations on the real numbers.
The Foundations of Computability Theory
Author: Borut Robič
Publisher: Springer Nature
ISBN: 3662624214
Category : Computers
Languages : en
Pages : 428
Book Description
This book offers an original and informative view of the development of fundamental concepts of computability theory. The treatment is put into historical context, emphasizing the motivation for ideas as well as their logical and formal development. In Part I the author introduces computability theory, with chapters on the foundational crisis of mathematics in the early twentieth century, and formalism. In Part II he explains classical computability theory, with chapters on the quest for formalization, the Turing Machine, and early successes such as defining incomputable problems, c.e. (computably enumerable) sets, and developing methods for proving incomputability. In Part III he explains relative computability, with chapters on computation with external help, degrees of unsolvability, the Turing hierarchy of unsolvability, the class of degrees of unsolvability, c.e. degrees and the priority method, and the arithmetical hierarchy. Finally, in the new Part IV the author revisits the computability (Church-Turing) thesis in greater detail. He offers a systematic and detailed account of its origins, evolution, and meaning, he describes more powerful, modern versions of the thesis, and he discusses recent speculative proposals for new computing paradigms such as hypercomputing. This is a gentle introduction from the origins of computability theory up to current research, and it will be of value as a textbook and guide for advanced undergraduate and graduate students and researchers in the domains of computability theory and theoretical computer science. This new edition is completely revised, with almost one hundred pages of new material. In particular the author applied more up-to-date, more consistent terminology, and he addressed some notational redundancies and minor errors. He developed a glossary relating to computability theory, expanded the bibliographic references with new entries, and added the new part described above and other new sections.
Publisher: Springer Nature
ISBN: 3662624214
Category : Computers
Languages : en
Pages : 428
Book Description
This book offers an original and informative view of the development of fundamental concepts of computability theory. The treatment is put into historical context, emphasizing the motivation for ideas as well as their logical and formal development. In Part I the author introduces computability theory, with chapters on the foundational crisis of mathematics in the early twentieth century, and formalism. In Part II he explains classical computability theory, with chapters on the quest for formalization, the Turing Machine, and early successes such as defining incomputable problems, c.e. (computably enumerable) sets, and developing methods for proving incomputability. In Part III he explains relative computability, with chapters on computation with external help, degrees of unsolvability, the Turing hierarchy of unsolvability, the class of degrees of unsolvability, c.e. degrees and the priority method, and the arithmetical hierarchy. Finally, in the new Part IV the author revisits the computability (Church-Turing) thesis in greater detail. He offers a systematic and detailed account of its origins, evolution, and meaning, he describes more powerful, modern versions of the thesis, and he discusses recent speculative proposals for new computing paradigms such as hypercomputing. This is a gentle introduction from the origins of computability theory up to current research, and it will be of value as a textbook and guide for advanced undergraduate and graduate students and researchers in the domains of computability theory and theoretical computer science. This new edition is completely revised, with almost one hundred pages of new material. In particular the author applied more up-to-date, more consistent terminology, and he addressed some notational redundancies and minor errors. He developed a glossary relating to computability theory, expanded the bibliographic references with new entries, and added the new part described above and other new sections.
Logic for Computer Science
Author: Jean H. Gallier
Publisher: Courier Dover Publications
ISBN: 0486780821
Category : Mathematics
Languages : en
Pages : 532
Book Description
This advanced text for undergraduate and graduate students introduces mathematical logic with an emphasis on proof theory and procedures for algorithmic construction of formal proofs. The self-contained treatment is also useful for computer scientists and mathematically inclined readers interested in the formalization of proofs and basics of automatic theorem proving. Topics include propositional logic and its resolution, first-order logic, Gentzen's cut elimination theorem and applications, and Gentzen's sharpened Hauptsatz and Herbrand's theorem. Additional subjects include resolution in first-order logic; SLD-resolution, logic programming, and the foundations of PROLOG; and many-sorted first-order logic. Numerous problems appear throughout the book, and two Appendixes provide practical background information.
Publisher: Courier Dover Publications
ISBN: 0486780821
Category : Mathematics
Languages : en
Pages : 532
Book Description
This advanced text for undergraduate and graduate students introduces mathematical logic with an emphasis on proof theory and procedures for algorithmic construction of formal proofs. The self-contained treatment is also useful for computer scientists and mathematically inclined readers interested in the formalization of proofs and basics of automatic theorem proving. Topics include propositional logic and its resolution, first-order logic, Gentzen's cut elimination theorem and applications, and Gentzen's sharpened Hauptsatz and Herbrand's theorem. Additional subjects include resolution in first-order logic; SLD-resolution, logic programming, and the foundations of PROLOG; and many-sorted first-order logic. Numerous problems appear throughout the book, and two Appendixes provide practical background information.
Foundations of Computation Theory
Author: M. Karpinski
Publisher: Lecture Notes in Computer Science
ISBN:
Category : Computers
Languages : en
Pages : 548
Book Description
Publisher: Lecture Notes in Computer Science
ISBN:
Category : Computers
Languages : en
Pages : 548
Book Description
Foundations of Probabilistic Logic Programming
Author: Fabrizio Riguzzi
Publisher: CRC Press
ISBN: 1000923215
Category : Computers
Languages : en
Pages : 548
Book Description
Since its birth, the field of Probabilistic Logic Programming has seen a steady increase of activity, with many proposals for languages and algorithms for inference and learning. This book aims at providing an overview of the field with a special emphasis on languages under the Distribution Semantics, one of the most influential approaches. The book presents the main ideas for semantics, inference, and learning and highlights connections between the methods. Many examples of the book include a link to a page of the web application http://cplint.eu where the code can be run online. This 2nd edition aims at reporting the most exciting novelties in the field since the publication of the 1st edition. The semantics for hybrid programs with function symbols was placed on a sound footing. Probabilistic Answer Set Programming gained a lot of interest together with the studies on the complexity of inference. Algorithms for solving the MPE and MAP tasks are now available. Inference for hybrid programs has changed dramatically with the introduction of Weighted Model Integration. With respect to learning, the first approaches for neuro-symbolic integration have appeared together with algorithms for learning the structure for hybrid programs. Moreover, given the cost of learning PLPs, various works proposed language restrictions to speed up learning and improve its scaling.
Publisher: CRC Press
ISBN: 1000923215
Category : Computers
Languages : en
Pages : 548
Book Description
Since its birth, the field of Probabilistic Logic Programming has seen a steady increase of activity, with many proposals for languages and algorithms for inference and learning. This book aims at providing an overview of the field with a special emphasis on languages under the Distribution Semantics, one of the most influential approaches. The book presents the main ideas for semantics, inference, and learning and highlights connections between the methods. Many examples of the book include a link to a page of the web application http://cplint.eu where the code can be run online. This 2nd edition aims at reporting the most exciting novelties in the field since the publication of the 1st edition. The semantics for hybrid programs with function symbols was placed on a sound footing. Probabilistic Answer Set Programming gained a lot of interest together with the studies on the complexity of inference. Algorithms for solving the MPE and MAP tasks are now available. Inference for hybrid programs has changed dramatically with the introduction of Weighted Model Integration. With respect to learning, the first approaches for neuro-symbolic integration have appeared together with algorithms for learning the structure for hybrid programs. Moreover, given the cost of learning PLPs, various works proposed language restrictions to speed up learning and improve its scaling.