Genetic Programming III

Genetic Programming III PDF Author: John R. Koza
Publisher: Morgan Kaufmann
ISBN: 9781558605435
Category : Computers
Languages : en
Pages : 1516

Get Book Here

Book Description
Genetic programming (GP) is a method for getting a computer to solve a problem by telling it what needs to be done instead of how to do it. Koza, Bennett, Andre, and Keane present genetically evolved solutions to dozens of problems of design, control, classification, system identification, and computational molecular biology. Among the solutions are 14 results competitive with human-produced results, including 10 rediscoveries of previously patented inventions.

Foundations of Genetic Programming

Foundations of Genetic Programming PDF Author: William B. Langdon
Publisher: Springer Science & Business Media
ISBN: 3662047268
Category : Computers
Languages : en
Pages : 265

Get Book Here

Book Description
This is one of the only books to provide a complete and coherent review of the theory of genetic programming (GP). In doing so, it provides a coherent consolidation of recent work on the theoretical foundations of GP. A concise introduction to GP and genetic algorithms (GA) is followed by a discussion of fitness landscapes and other theoretical approaches to natural and artificial evolution. Having surveyed early approaches to GP theory it presents new exact schema analysis, showing that it applies to GP as well as to the simpler GAs. New results on the potentially infinite number of possible programs are followed by two chapters applying these new techniques.

Genetic Programming III

Genetic Programming III PDF Author: John R. Koza
Publisher: Morgan Kaufmann
ISBN: 9781558605435
Category : Computers
Languages : en
Pages : 1516

Get Book Here

Book Description
Genetic programming (GP) is a method for getting a computer to solve a problem by telling it what needs to be done instead of how to do it. Koza, Bennett, Andre, and Keane present genetically evolved solutions to dozens of problems of design, control, classification, system identification, and computational molecular biology. Among the solutions are 14 results competitive with human-produced results, including 10 rediscoveries of previously patented inventions.

Genetic Algorithms and Genetic Programming

Genetic Algorithms and Genetic Programming PDF Author: Michael Affenzeller
Publisher: CRC Press
ISBN: 1420011324
Category : Computers
Languages : en
Pages : 395

Get Book Here

Book Description
Genetic Algorithms and Genetic Programming: Modern Concepts and Practical Applications discusses algorithmic developments in the context of genetic algorithms (GAs) and genetic programming (GP). It applies the algorithms to significant combinatorial optimization problems and describes structure identification using HeuristicLab as a platform for al

Genetic Programming Theory and Practice

Genetic Programming Theory and Practice PDF Author: Rick Riolo
Publisher: Springer Science & Business Media
ISBN: 1441989838
Category : Computers
Languages : en
Pages : 322

Get Book Here

Book Description
Genetic Programming Theory and Practice explores the emerging interaction between theory and practice in the cutting-edge, machine learning method of Genetic Programming (GP). The material contained in this contributed volume was developed from a workshop at the University of Michigan's Center for the Study of Complex Systems where an international group of genetic programming theorists and practitioners met to examine how GP theory informs practice and how GP practice impacts GP theory. The contributions cover the full spectrum of this relationship and are written by leading GP theorists from major universities, as well as active practitioners from leading industries and businesses. Chapters include such topics as John Koza's development of human-competitive electronic circuit designs; David Goldberg's application of "competent GA" methodology to GP; Jason Daida's discovery of a new set of factors underlying the dynamics of GP starting from applied research; and Stephen Freeland's essay on the lessons of biology for GP and the potential impact of GP on evolutionary theory.

Genetic Algorithms and Genetic Programming in Computational Finance

Genetic Algorithms and Genetic Programming in Computational Finance PDF Author: Shu-Heng Chen
Publisher: Springer Science & Business Media
ISBN: 1461508355
Category : Business & Economics
Languages : en
Pages : 491

Get Book Here

Book Description
After a decade of development, genetic algorithms and genetic programming have become a widely accepted toolkit for computational finance. Genetic Algorithms and Genetic Programming in Computational Finance is a pioneering volume devoted entirely to a systematic and comprehensive review of this subject. Chapters cover various areas of computational finance, including financial forecasting, trading strategies development, cash flow management, option pricing, portfolio management, volatility modeling, arbitraging, and agent-based simulations of artificial stock markets. Two tutorial chapters are also included to help readers quickly grasp the essence of these tools. Finally, a menu-driven software program, Simple GP, accompanies the volume, which will enable readers without a strong programming background to gain hands-on experience in dealing with much of the technical material introduced in this work.

Genetic Programming IV

Genetic Programming IV PDF Author: John R. Koza
Publisher: Springer Science & Business Media
ISBN: 9780387250670
Category : Computers
Languages : en
Pages : 626

Get Book Here

Book Description
Genetic Programming IV: Routine Human-Competitive Machine Intelligence presents the application of GP to a wide variety of problems involving automated synthesis of controllers, circuits, antennas, genetic networks, and metabolic pathways. The book describes fifteen instances where GP has created an entity that either infringes or duplicates the functionality of a previously patented 20th-century invention, six instances where it has done the same with respect to post-2000 patented inventions, two instances where GP has created a patentable new invention, and thirteen other human-competitive results. The book additionally establishes: GP now delivers routine human-competitive machine intelligence GP is an automated invention machine GP can create general solutions to problems in the form of parameterized topologies GP has delivered qualitatively more substantial results in synchrony with the relentless iteration of Moore's Law

Optimized Genetic Programming Applications: Emerging Research and Opportunities

Optimized Genetic Programming Applications: Emerging Research and Opportunities PDF Author: Hrnjica, Bahrudin
Publisher: IGI Global
ISBN: 1522560068
Category : Medical
Languages : en
Pages : 320

Get Book Here

Book Description
Data is more valuable than ever in the twenty-first century, and tremendous amounts of data are being generated every second. With a fast-growing information industry, engineers are required to develop new tools and techniques that increase human capabilities of mining useful knowledge from the vast amounts of data. Optimized Genetic Programming Applications: Emerging Research and Opportunities is an essential reference source that explores the concept of genetic programming and its role in managing engineering problems. It also examines genetic programming as a supervised machine learning technique, focusing on implementation and application. As a resource that details both the theoretical aspects and implementation of genetic programming, this book is a useful source for academicians, biological engineers, computer programmers, scientists, researchers, and upper-level students seeking the latest research on genetic programming.

An Introduction to Genetic Algorithms

An Introduction to Genetic Algorithms PDF Author: Melanie Mitchell
Publisher: MIT Press
ISBN: 9780262631853
Category : Computers
Languages : en
Pages : 226

Get Book Here

Book Description
Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics—particularly in machine learning, scientific modeling, and artificial life—and reviews a broad span of research, including the work of Mitchell and her colleagues. The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines. An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.

Linear Genetic Programming

Linear Genetic Programming PDF Author: Markus F. Brameier
Publisher: Springer Science & Business Media
ISBN: 0387310304
Category : Computers
Languages : en
Pages : 323

Get Book Here

Book Description
Linear Genetic Programming presents a variant of Genetic Programming that evolves imperative computer programs as linear sequences of instructions, in contrast to the more traditional functional expressions or syntax trees. Typical GP phenomena, such as non-effective code, neutral variations, and code growth are investigated from the perspective of linear GP. This book serves as a reference for researchers; it includes sufficient introductory material for students and newcomers to the field.

Research Anthology on Multi-Industry Uses of Genetic Programming and Algorithms

Research Anthology on Multi-Industry Uses of Genetic Programming and Algorithms PDF Author: Management Association, Information Resources
Publisher: IGI Global
ISBN: 1799880990
Category : Computers
Languages : en
Pages : 1534

Get Book Here

Book Description
Genetic programming is a new and evolutionary method that has become a novel area of research within artificial intelligence known for automatically generating high-quality solutions to optimization and search problems. This automatic aspect of the algorithms and the mimicking of natural selection and genetics makes genetic programming an intelligent component of problem solving that is highly regarded for its efficiency and vast capabilities. With the ability to be modified and adapted, easily distributed, and effective in large-scale/wide variety of problems, genetic algorithms and programming can be utilized in many diverse industries. This multi-industry uses vary from finance and economics to business and management all the way to healthcare and the sciences. The use of genetic programming and algorithms goes beyond human capabilities, enhancing the business and processes of various essential industries and improving functionality along the way. The Research Anthology on Multi-Industry Uses of Genetic Programming and Algorithms covers the implementation, tools and technologies, and impact on society that genetic programming and algorithms have had throughout multiple industries. By taking a multi-industry approach, this book covers the fundamentals of genetic programming through its technological benefits and challenges along with the latest advancements and future outlooks for computer science. This book is ideal for academicians, biological engineers, computer programmers, scientists, researchers, and upper-level students seeking the latest research on genetic programming.