Formulation and Solution of a Crystal Plasticity Constitutive Model with Slip Gradient Effects

Formulation and Solution of a Crystal Plasticity Constitutive Model with Slip Gradient Effects PDF Author: Jobie M. Gerken
Publisher:
ISBN:
Category :
Languages : en
Pages : 342

Get Book Here

Book Description

Formulation and Solution of a Crystal Plasticity Constitutive Model with Slip Gradient Effects

Formulation and Solution of a Crystal Plasticity Constitutive Model with Slip Gradient Effects PDF Author: Jobie M. Gerken
Publisher:
ISBN:
Category :
Languages : en
Pages : 342

Get Book Here

Book Description


Crystal Plasticity Finite Element Methods

Crystal Plasticity Finite Element Methods PDF Author: Franz Roters
Publisher: John Wiley & Sons
ISBN: 3527642099
Category : Technology & Engineering
Languages : en
Pages : 188

Get Book Here

Book Description
Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.

High-Resolution Crystal Plasticity Simulations

High-Resolution Crystal Plasticity Simulations PDF Author: Martin Diehl
Publisher: Apprimus Wissenschaftsverlag
ISBN: 386359410X
Category : Technology & Engineering
Languages : en
Pages : 138

Get Book Here

Book Description
In this work the possibilities and capabilities of high-resolution crystal plasticity simulations are presented and discussed. Giving several examples, it is shown how the application of crystal plasticity simulations helps to understand the micro-mechanical behaviour of crystalline materials. To avoid the high computational costs associated with crystal plasticity simulations that arise from (i) the evaluation of the selected constitutive law, and (ii) the solution of the associated mechanical boundary value problem, both contributions to the runtime have to be kept small. This is done by (i) employing a rather simple—and therefore fast—constitutive model, and by (ii) using an effective spectral method employing fast Fourier transforms for solving the partial differential equations describing the mechanical behaviour. Here, an improved spectral solver incorporated into the Düsseldorf Advanced Material Simulation Kit (DAMASK) is used.

Dislocation Mechanism-Based Crystal Plasticity

Dislocation Mechanism-Based Crystal Plasticity PDF Author: Zhuo Zhuang
Publisher: Academic Press
ISBN: 0128145927
Category : Technology & Engineering
Languages : en
Pages : 450

Get Book Here

Book Description
Dislocation Based Crystal Plasticity: Theory and Computation at Micron and Submicron Scale provides a comprehensive introduction to the continuum and discreteness dislocation mechanism-based theories and computational methods of crystal plasticity at the micron and submicron scale. Sections cover the fundamental concept of conventional crystal plasticity theory at the macro-scale without size effect, strain gradient crystal plasticity theory based on Taylar law dislocation, mechanism at the mesoscale, phase-field theory of crystal plasticity, computation at the submicron scale, including single crystal plasticity theory, and the discrete-continuous model of crystal plasticity with three-dimensional discrete dislocation dynamics coupling finite element method (DDD-FEM). Three kinds of plastic deformation mechanisms for submicron pillars are systematically presented. Further sections discuss dislocation nucleation and starvation at high strain rate and temperature effect for dislocation annihilation mechanism. Covers dislocation mechanism-based crystal plasticity theory and computation at the micron and submicron scale Presents crystal plasticity theory without size effect Deals with the 3D discrete-continuous (3D DCM) theoretic and computational model of crystal plasticity with 3D discrete dislocation dynamics (3D DDD) coupling finite element method (FEM) Includes discrete dislocation mechanism-based theory and computation at the submicron scale with single arm source, coating micropillar, lower cyclic loading pillars, and dislocation starvation at the submicron scale

Numerically Efficient Gradient Crystal Plasticity with a Grain Boundary Yield Criterion and Dislocation-based Work-Hardening

Numerically Efficient Gradient Crystal Plasticity with a Grain Boundary Yield Criterion and Dislocation-based Work-Hardening PDF Author: Wulfinghoff, Stephan
Publisher: KIT Scientific Publishing
ISBN: 3731502453
Category : Technology (General)
Languages : en
Pages : 288

Get Book Here

Book Description
This book is a contribution to the further development of gradient plasticity. Several open questions are addressed, where the efficient numerical implementation is particularly focused on. Thebook inspects an equivalent plastic strain gradient plasticity theory and a grain boundary yield model. Experiments can successfully be reproduced. The hardening model is based on dislocation densities evolving according to partial differential equations taking into account dislocation transport.

On the Formulation of a Crystal Plasticity Model

On the Formulation of a Crystal Plasticity Model PDF Author: Esteban B. Marin
Publisher:
ISBN:
Category :
Languages : en
Pages : 62

Get Book Here

Book Description
This report presents the formulation of a crystal elasto-viscoplastic model and the corresponding integration scheme. The model is suitable to represent the isothermal, anisotropic, large deformation of polycrystalline metals. The formulation is an extension of a rigid viscoplastic model to account for elasticity effects, and incorporates a number of changes with respect to a previous formulation [Marin & Dawson, 1998]. This extension is formally derived using the well-known multiplicative decomposition of the deformation gradient into an elastic and plastic components, where the elastic part is additionally decomposed into the elastic stretch V{sup e} and the proper orthogonal R{sup e} tensors. The constitutive equations are written in the intermediate, stress-free configuration obtained by unloading the deformed crystal through the elastic stretch V{sup e-}. The model is framed in a thermodynamic setting, and developed initially for large elastic strains. The crystal equations are then specialized to the case of small elastic strains, an assumption typically valid for metals. The developed integration scheme is implicit and proceeds by separating the spherical and deviatoric crystal responses. An ''approximate'' algorithmic material moduli is also derived for applications in implicit numerical codes. The model equations and their integration procedure have been implemented in both a material point simulator and a commercial finite element code. Both implementations are validated by solving a number of examples involving aggregates of either face centered cubic (FCC) or hexagonal close-packed (HCP) crystals subjected to different loading paths.

A Gradient Crystal Plasticity Theory Based on an Extended Energy Balance

A Gradient Crystal Plasticity Theory Based on an Extended Energy Balance PDF Author: Prahs, Andreas
Publisher: KIT Scientific Publishing
ISBN: 3731510251
Category : Technology & Engineering
Languages : en
Pages : 182

Get Book Here

Book Description
An overview of different methods for the derivation of extended continuum models is given. A gradient plasticity theory is established in the context of small deformations and single slip by considering the invariance of an extended energy balance with respect to Euclidean transformations, where the plastic slip is considered as an additional degree of freedom. Thermodynamically consistent flow rules at the grain boundary are derived. The theory is applied to a two- and a three-phase laminate.

Plasticity and Beyond

Plasticity and Beyond PDF Author: Jörg Schröder
Publisher: Springer Science & Business Media
ISBN: 3709116252
Category : Science
Languages : en
Pages : 417

Get Book Here

Book Description
The book presents the latest findings in experimental plasticity, crystal plasticity, phase transitions, advanced mathematical modeling of finite plasticity and multi-scale modeling. The associated algorithmic treatment is mainly based on finite element formulations for standard (local approach) as well as for non-standard (non-local approach) continua and for pure macroscopic as well as for directly coupled two-scale boundary value problems. Applications in the area of material design/processing are covered, ranging from grain boundary effects in polycrystals and phase transitions to deep-drawing of multiphase steels by directly taking into account random microstructures.

Single-crystal Gradient Plasticity with an Accumulated Plastic Slip: Theory and Applications

Single-crystal Gradient Plasticity with an Accumulated Plastic Slip: Theory and Applications PDF Author: Eric Bayerschen
Publisher: KIT Scientific Publishing
ISBN: 3731506068
Category : Technology (General)
Languages : en
Pages : 278

Get Book Here

Book Description
In experiments on metallic microwires, size effects occur as a result of the interaction of dislocations with, e.g., grain boundaries. In continuum theories this behavior can be approximated using gradient plasticity. A numerically efficient geometrically linear gradient plasticity theory is developed considering the grain boundaries and implemented with finite elements. Simulations are performed for several metals in comparison to experiments and discrete dislocation dynamics simulations.

Applied Mechanics of Solids

Applied Mechanics of Solids PDF Author: Allan F. Bower
Publisher: CRC Press
ISBN: 1439802483
Category : Science
Languages : en
Pages : 820

Get Book Here

Book Description
Modern computer simulations make stress analysis easy. As they continue to replace classical mathematical methods of analysis, these software programs require users to have a solid understanding of the fundamental principles on which they are based.Develop Intuitive Ability to Identify and Avoid Physically Meaningless PredictionsApplied Mechanics o