Formation and Removal of SOx and NOx in Pressurized Oxy-fuel Coal Combustion

Formation and Removal of SOx and NOx in Pressurized Oxy-fuel Coal Combustion PDF Author: Muhammad Jahangir Malik
Publisher:
ISBN:
Category : Carbon sequestration
Languages : en
Pages : 136

Get Book Here

Book Description
Growing concerns over greenhouse gas emissions have driven extensive research in carbon capture, storage and sequestration. Oxy-fuel combustion is a promising technology in CO2 capture, as the combustion products consists primarily of CO2 and H2O with contaminants like NOx and SOx. More recently, oxy-fuel combustion under pressurized conditions has gained attention due to its overall higher net efficiency, while decreasing the auxiliary power consumption in the process. The need for a better understanding of the coal combustion in oxy-fuel conditions under elevated pressures and the formation of SOx and NOx in such conditions inspired this research project. In this thesis, the effect of pressurized oxy-fuel combustion on SOx and NOx formation from coal combustion and their removal from the flue gas was investigated. The combustion modelling for lignite coal was conducted in ANSYS Fluent, under oxy-fuel environment at atmospheric pressure and elevated pressures (5 atm, 10 atm, 15 atm). The results showed an increase in SO3 formation and rapid decrease in NO in the flue gas as the pressure was increased in the combustor. At 15 atm, the NOx emissions were found to be below 100 ppm, which is an acceptable concentration of NOx for CO2 transport and storage. In order to investigate the influence of pressure on SOx and NOx in the flue gas in the post-combustion zone, the system was subjected to a temperature profile representative of an actual plant boiler, where the residence time is around 2 seconds. The results showed that the rate of SO2 and NO oxidation to SO3 and NO2, respectively, were influenced by the rate of temperature decrease, and the effect of pressure was not as significant. It was observed that flue gas composition remained constant below 550 K, as all SO3 present in the flue gas converted to gaseous H2SO4. Lastly, simulations for SOx and NOx removal from flue gas via absorption were performed at 15 atm to purify the flue gas to meet the requirements for CO2 transportation. The results showed complete removal of SOx in the form of H2SO4 and SO42- and around 30% NOx removal, mostly in the form of HNO3. A sensitivity analysis was performed on the reflux ratio of liquid in the absorber and the results showed increased NOx removal at lower reflux ratio. The investigation helped conclude that pressurized oxy-fuel combustion results in lower SOx and NOx emissions, and require less sophisticated separation techniques to meet the pipeline threshold for CO2 transportation in storage and sequestration.

Formation and Removal of SOx and NOx in Pressurized Oxy-fuel Coal Combustion

Formation and Removal of SOx and NOx in Pressurized Oxy-fuel Coal Combustion PDF Author: Muhammad Jahangir Malik
Publisher:
ISBN:
Category : Carbon sequestration
Languages : en
Pages : 136

Get Book Here

Book Description
Growing concerns over greenhouse gas emissions have driven extensive research in carbon capture, storage and sequestration. Oxy-fuel combustion is a promising technology in CO2 capture, as the combustion products consists primarily of CO2 and H2O with contaminants like NOx and SOx. More recently, oxy-fuel combustion under pressurized conditions has gained attention due to its overall higher net efficiency, while decreasing the auxiliary power consumption in the process. The need for a better understanding of the coal combustion in oxy-fuel conditions under elevated pressures and the formation of SOx and NOx in such conditions inspired this research project. In this thesis, the effect of pressurized oxy-fuel combustion on SOx and NOx formation from coal combustion and their removal from the flue gas was investigated. The combustion modelling for lignite coal was conducted in ANSYS Fluent, under oxy-fuel environment at atmospheric pressure and elevated pressures (5 atm, 10 atm, 15 atm). The results showed an increase in SO3 formation and rapid decrease in NO in the flue gas as the pressure was increased in the combustor. At 15 atm, the NOx emissions were found to be below 100 ppm, which is an acceptable concentration of NOx for CO2 transport and storage. In order to investigate the influence of pressure on SOx and NOx in the flue gas in the post-combustion zone, the system was subjected to a temperature profile representative of an actual plant boiler, where the residence time is around 2 seconds. The results showed that the rate of SO2 and NO oxidation to SO3 and NO2, respectively, were influenced by the rate of temperature decrease, and the effect of pressure was not as significant. It was observed that flue gas composition remained constant below 550 K, as all SO3 present in the flue gas converted to gaseous H2SO4. Lastly, simulations for SOx and NOx removal from flue gas via absorption were performed at 15 atm to purify the flue gas to meet the requirements for CO2 transportation. The results showed complete removal of SOx in the form of H2SO4 and SO42- and around 30% NOx removal, mostly in the form of HNO3. A sensitivity analysis was performed on the reflux ratio of liquid in the absorber and the results showed increased NOx removal at lower reflux ratio. The investigation helped conclude that pressurized oxy-fuel combustion results in lower SOx and NOx emissions, and require less sophisticated separation techniques to meet the pipeline threshold for CO2 transportation in storage and sequestration.

Emissions Reduction

Emissions Reduction PDF Author: A. Tomita
Publisher: Elsevier
ISBN: 9780080440897
Category : Nature
Languages : en
Pages : 340

Get Book Here

Book Description
Over the past decade the topic of emissions reduction and control has remained an important area of research due to the enforcement of various Government policies in an attempt to minimize the impact on the environment. One area in which a great deal of research has been conducted to address this policy is NOx/SOx suppression. However, despite the progress that has been made over this time period, further research into the most effective method of reducing NOx/SOx emissions is still urgently required. In developed countries, a more stringent requirement in the level of emissions (such as is NOx/SOx component of less than 10ppm) will be enforced in the near future. Developing countries will also need a new technology that is effective and that is suited to each countries needs. Additional research and development efforts are thus necessary to meet such requirements. This compendium contains a collection of key papers themed around NOx/SOx emissions from combustion of hydrocarbon resources and the attempts to secure an efficient and effective method for reducing these emissions. These key papers are taken from the journals Fuel, Fuel Processing Technology and Progress in Energy and Combustion Science.

Modelling and Simulation of SOx and NOx Formation Under Oxy-Coal Combustion Conditions

Modelling and Simulation of SOx and NOx Formation Under Oxy-Coal Combustion Conditions PDF Author: Michael Müller
Publisher:
ISBN: 9783844040593
Category :
Languages : en
Pages : 164

Get Book Here

Book Description


Oxygen-Carrier-Aided Combustion Technology for Solid-Fuel Conversion in Fluidized Bed

Oxygen-Carrier-Aided Combustion Technology for Solid-Fuel Conversion in Fluidized Bed PDF Author: Lunbo Duan
Publisher: Springer Nature
ISBN: 9811991278
Category : Technology & Engineering
Languages : en
Pages : 126

Get Book Here

Book Description
This open access book surveys the development of OCAC technology in the last decade for solid fuel conversion in fluidized beds. The scientific concerns, including combustion and emission characteristics, ash-related problems, OC aging, and so on, are summarized and analyzed. Beyond this, new concepts like OCAC with Oxy-PFBC, OCAC coupled with staged fuel conversion, OCAC in rotatory kilns and multi-functional OCAC are proposed, so as to promote the applications of OCAC to various fields in the future. Moreover, this book also outlines the perspectives for future research and development of OCAC. As an emerging technology, extensive studies and investigations are still necessary to fill in the gap from the fundamental understanding of the technology to its industrial demonstrations. Nevertheless, we believe that this book provides novel insights for the readership of energy and combustion and stimulate meaningful follow-on research on OCAC technology.

Nitrogen oxides (NOx) why and how they are controlled

Nitrogen oxides (NOx) why and how they are controlled PDF Author:
Publisher: DIANE Publishing
ISBN: 1428902805
Category :
Languages : en
Pages : 57

Get Book Here

Book Description


Modeling and Simulation of SOx and NOx Reduction Processes in Pulverized Coal Furnaces

Modeling and Simulation of SOx and NOx Reduction Processes in Pulverized Coal Furnaces PDF Author:
Publisher: Cuvillier Verlag
ISBN: 3736909381
Category : Technology & Engineering
Languages : de
Pages : 180

Get Book Here

Book Description
ABSTRACT The current work briefly reviews the formation mechanisms and reduction approaches of the pollutants SOx and NOx in coal combustion and focuses on the simulation of the lower-cost in-furnace measures ƒ{ the dry additive process (DAP) for SOx reduction and the reburning as well as the advanced reburning (hybrid reburning/SNCR) techniques for NOx reduction. In addition, the influence of sulfur compounds on NOx formation is investigated. The major workings include: Simulation of the dry additive desulfurization process (DAP): Different models ƒ{ shrinking core model (SCM), pore model (PM) and grain model (GM) ƒ{ are implemented to describe the gas-particle reaction. Relevant processes such as the sintering of the additive, the self-retention by coal ash, the thermal equilibrium of the sulfation reaction are accounted for and modeled. A comprehensive model for the DAP with calcium based additives is subsequently established and integrated into a combustion CFD (computational fluid dynamics) code AIOLOS, in both Eulerian and Lagrangian schemes. The model is verified with experiments on a test reactor. Mechanism reduction and simulation of reburning/SNCR Processes: A method for reduction of kinetic mechanisms is introduced. A program tool is developed for automatic reduction of detailed reaction mechanisms. Reduced mechanisms for reburning and hybrid reburning/SNCR processes are developed and implemented into the CFD code. CFD-calculations with the reduced mechanisms are performed and compared with experimental measurements to comprehensively evaluate the simulation approach. It is shown that the detailed simulation is capable of modeling the complex reburning and SNCR processes with acceptable computing time and achieves reasonable results in wide parameter ranges. Study of the influence of sulfur compounds on NOx formation: The effect of SO2 on NOx formation is experimentally investigated and analysed with kinetic mechanisms. It is indicated that the presence of SO2 inhabits the NOx formation and reduce the NOx emissions in normal air-rich combustion. Under air-staging conditions, SO2 addition has no obvious influence on the final NOx emissions.

Process Modeling and Analysis of CO2 Purification for Oxy-coal Combustion

Process Modeling and Analysis of CO2 Purification for Oxy-coal Combustion PDF Author: Chukwunwike Ogbonnia Iloeje
Publisher:
ISBN:
Category :
Languages : en
Pages : 133

Get Book Here

Book Description
Oxy-coal combustion technology has great potential as one of the major CO2 capture technologies for power generation from coal. The distinguishing feature of oxy-coal combustion is that the oxygen source is a high concentration oxygen stream and the product flue gas consists primarily of CO2 and H20 with contaminants like NOx, SOx, and non-condensable gases like argon, oxygen and nitrogen. For carbon sequestration and Enhanced Oil Recovery (EOR) applications, pipeline transport standards as well as storage specifications impose concentration limits on these contaminants. These must be removed to ensure that the transported CO2-rich stream stays within specified limits to prevent aqueous phase separation, hydrate formation, and corrosion due to acids, water or oxygen. The purification process however constitutes additional energy consumption and lowers overall cycle efficiency. Purification options like traditional flue gas desulfurization (FGD), selective catalytic reduction (SCR), catalytic O2 consumption, packed bed adsorption and low temperature flash separation have been proposed. In this thesis, we develop a novel CO2 purification process model for oxy combustion systems that utilizes high-pressure reactive absorption columns for NOx and SOxrem oval and distillation strategies for noncondensable gas removal. This process results in significant cost savings and lower energy consumption compared to the traditional systems. We conduct a sensitivity analysis NOx and SOx removal system to determine the key performance parameters and based on the results present a modification to the base case that results in further cost and energy savings. Different strategies for the removal of non-condensable gases are developed and compared. This study also explores opportunities for integrating the CO2 purification unit (CPU) with the base cycle and the impacts of the different strategies on the overall oxy combustion cycle efficiency are presented. A cost analysis for the proposed purification process is also presented.

Oxygen-Enhanced Combustion

Oxygen-Enhanced Combustion PDF Author: Charles E. Baukal, Jr.
Publisher: CRC Press
ISBN: 9781420050257
Category : Technology & Engineering
Languages : en
Pages : 392

Get Book Here

Book Description
Combustion technology has traditionally been dominated by air/fuel combustion. However, two developments have increased the significance of oxygen-enhanced combustion - new technology producing oxygen less expensively and the increased importance of environmental regulations. Advantages of oxygen-enhanced combustion include numerous environmental benefits as well as increased energy efficiency and productivity. The text compiles information about using oxygen to enhance high temperature industrial heating and melting processes - serving as a unique resource for specialists implementing the use of oxygen in combustion systems; combustion equipment and industrial gas suppliers; researchers; funding agencies for advanced combustion technologies; and agencies developing regulations for safe, efficient, and environmentally friendly combustion systems. Oxygen-Enhanced Combustion: Examines the fundamentals of using oxygen in combustion, pollutant emissions, oxygen production, and heat transfer Describes ferrous and nonferrous metals, glass, and incineration Discusses equipment, safety, design, and fuels Assesses recent trends including stricter environmental regulations, lower-cost methods of producing oxygen, improved burner designs, and increasing fuel costs Emphasizing applications and basic principles, this book will act as the primary resource for mechanical, chemical, aerospace, and environmental engineers and scientists; physical chemists; fuel technologists; fluid dynamists; and combustion design engineers. Topics include: General benefits Economics Potential problems Pollutant emissions Oxygen production Adsorption Air separation Heat transfer Ferrous metals Melting and refining processes Nonferrous metals Minerals Glass furnaces Incineration Safety Handling and storage Equipment design Flow controls Fuels

Proof of Concept for Integrating Oxy-fuel Combustion and the Removal of All Pollutants from a Coal Fired Flame

Proof of Concept for Integrating Oxy-fuel Combustion and the Removal of All Pollutants from a Coal Fired Flame PDF Author: Paul C. Turner
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
The USDOE/Albany Research Center and Jupiter Oxygen Corporation, working together under a Cooperative Research and Development Agreement, have demonstrated proof-of-concept for the integration of Jupiter's oxy-fuel combustion and an integrated system for the removal of all stack pollutants, including CO2, from a coal-fired flame. The components were developed using existing process technology with the addition of a new oxy-coal combustion nozzle. The results of the test showed that the system can capture SOx, NOx, particulates, and even mercury as a part of the process of producing liquefied CO2 for sequestration. This is part of an ongoing research project to explore alternative methods for CO2 capture that will be applicable to both retrofit and new plant construction.

A study of fuel NOx formation in pulverized coal combustion

A study of fuel NOx formation in pulverized coal combustion PDF Author: M. Sato
Publisher:
ISBN:
Category :
Languages : ja
Pages : 24

Get Book Here

Book Description