Formation and Control of Soot and NO in Counter-flow Non-premixed and Partially Premixed Flames

Formation and Control of Soot and NO in Counter-flow Non-premixed and Partially Premixed Flames PDF Author: Hemant P. Mungekar
Publisher:
ISBN:
Category :
Languages : en
Pages : 512

Get Book Here

Book Description

Formation and Control of Soot and NO in Counter-flow Non-premixed and Partially Premixed Flames

Formation and Control of Soot and NO in Counter-flow Non-premixed and Partially Premixed Flames PDF Author: Hemant P. Mungekar
Publisher:
ISBN:
Category :
Languages : en
Pages : 512

Get Book Here

Book Description


Investigation of Soot Formation in Non-premixed and Partially Premixed Flames

Investigation of Soot Formation in Non-premixed and Partially Premixed Flames PDF Author: Claudya Pahola Arana
Publisher:
ISBN:
Category :
Languages : en
Pages : 140

Get Book Here

Book Description


Flow Field and Soot Formation Characteristics in Swirl-stabilized Non-premixed Turbulent Flames

Flow Field and Soot Formation Characteristics in Swirl-stabilized Non-premixed Turbulent Flames PDF Author: Lu-Yin Wang
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Soot formation and evolution in relation with the flow fields were investigated experimentally in turbulent swirl-stabilized non-premixed flames using three different fuels: methane, ethanol and aviation Jet A-1. The studied flames were confined and stabilized in a model gas turbine combustor with a swirl number of ~0.55. Soot volume fraction, fv, and primary soot particle size, dp, were measured using auto-compensating laser-induced incandescence, and planar three-component velocity fields were measured using stereoscopic particle image velocimetry. Measurements of planar laser-induced fluorescence of OH and OH* chemiluminescence were also made for methane and ethanol flames. The OH* field was further Abel-inverted to qualitatively locate the heat release zone. The flow field for all flames featured pronounced inner and outer recirculation zones (IRZ, ORZ), each bounded by their corresponding inner and outer shear layers (ISL, OSL). Abel-inverted OH* intensity maps showed that primary reaction zones occurred in the vicinity of ISL. The central fuel jet penetrating into the IRZ accompanied by a stagnation zone was observed in all methane flames. Soot measurements showed that the overall dp for methane and Jet A-1 flames ranged between 30 nm and 60 nm without discernible trends. In methane flames, peak time-averaged fv occurred between the central jet penetration and the ISL. The decrease and the final disappearance of time-averaged fv were strongly correlated with elevated OH, demonstrating a dominant oxidative attack of OH on soot. With a ~7% increase in air flow rate, the level of soot volume fraction dropped by nearly threefold due to enhanced turbulence intermittency. The appearance of ethanol spray flames, which lacked a bright yellow color, largely differed from others. The absence of soot was confirmed in the laser-induced incandescence measurements. The isothermal flow field of ethanol flames exhibited a large-scale structure of precessing vortex core which was then suppressed under reacting conditions. In Jet A-1 flames, spray pattern changed from V-shaped hollow cone to semi-solid cone when air flow rate increased by 20%, resulting in a 60% reduction in peak time-averaged fv. In contrast to results obtained from the methane flame, soot was found primarily outside the ISL where fuel existed in abundance.

Soot in Combustion Systems and Its Toxic Properties

Soot in Combustion Systems and Its Toxic Properties PDF Author: J. Lahaye
Publisher: Springer Science & Business Media
ISBN: 1468444638
Category : Science
Languages : en
Pages : 429

Get Book Here

Book Description
Our interest in Mulhouse for carbon black and soot began some 30 years ago when J.B. Donnet developed the concept of surface chemistry of carbon and its involvement in interactions with gas, liquid and solid phases. In the late sixties, we began to study soot formation in pyrolytic systems and later on in flames. The idea of organ1z1ng a meeting on soot formation originated some four or five years ago, through discussions among Professor J.B. Howard, Dr. A. D'Alessio and ourselves. At that time the scientific community was becoming aware of the necessity to strictly control soot formation and emission. Being involved in the study of surface properties of carbon black as well as of formation of soot, we realized that the combustion community was not always fully aware of the progress made by the physical-chemists on carbon black. Reciprocally, the carbon specialists were often ignoring the research carried out on soot in flames. One objective of this workshop was to stimulate discussions between these two scientific communities. During the preparation of the meeting, and especially during the review process by the Material Science Committee of the Scientific Affairs Division of N.A.T.O. the toxicological aspect emerged as being an important component to be addressed during the workshop. To reflect these preoccupations we invited biologists, physical chemists and engineers, all leaders in their field. The final programme is a compromise of the different aspects of the subject and was divided in five sessions.

Soot Formation in Non-premixed Laminar Flames at Subcritical and Supercritical Pressures

Soot Formation in Non-premixed Laminar Flames at Subcritical and Supercritical Pressures PDF Author: Hyun Il Joo
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
An experimental study was conducted using axisymmetric co-flow laminar diffusion flames of methane-air, methane-oxygen and ethylene-air to examine the effect of pressure on soot formation and the structure of the temperature field. A liquid fuel burner was designed and built to observe the sooting behavior of methanol-air and n-heptane-air laminar diffusion flames at elevated pressures up to 50 atm. A non-intrusive, line-of-sight spectral soot emission (SSE) diagnostic technique was used to determine the temperature and the soot volume fraction of methane-air flames up to 60 atm, methane-oxygen flames up to 90 atm and ethylene-air flames up to 35 atm. The physical flame structure of the methane-air and methane-oxygen diffusion flames were characterized over the pressure range of 10 to 100 atm and up to 35 atm for ethylene-air flames. The flame height, marked by the visible soot radiation emission, remained relatively constant for methane-air and ethylene-air flames over their respected pressure ranges, while the visible flame height for the methane-oxygen flames was reduced by over 50 % between 10 and 100 atm. During methane-air experiments, observations of anomalous occurrence of liquid material formation at 60 atm and above were recorded. The maximum conversion of the carbon in the fuel to soot exhibited a strong power-law dependence on pressure. At pressures 10 to 30 atm, the pressure exponent is approximately 0.73 for methane-air flames. At higher pressures, between 30 and 60 atm, the pressure exponent is approximately 0.33. The maximum fuel carbon conversion to soot is 12.6 % at 60 atm. For methane-oxygen flames, the pressure exponent is approximately 1.2 for pressures between 10 and 40 atm. At pressures between 50 and 70 atm, the pressure exponent is about -3.8 and approximately -12 for 70 to 90 atm. The maximum fuel carbon conversion to soot is 2 % at 40 atm. For ethylene-air flames, the pressure exponent is approximately 1.4 between 10 and 30 atm. The maximum carbon conversion to soot is approximately 6.5 % at 30 atm and remained constant at higher pressures.

Chemical Abstracts

Chemical Abstracts PDF Author:
Publisher:
ISBN:
Category : Chemistry
Languages : en
Pages : 2540

Get Book Here

Book Description


Soot Formation in Non-premixed Laminar Flames at Subcritical and Supercritical Pressures

Soot Formation in Non-premixed Laminar Flames at Subcritical and Supercritical Pressures PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
An experimental study was conducted using axisymmetric co-flow laminar diffusion flames of methane-air, methane-oxygen and ethylene-air to examine the effect of pressure on soot formation and the structure of the temperature field. A liquid fuel burner was designed and built to observe the sooting behavior of methanol-air and n-heptane-air laminar diffusion flames at elevated pressures up to 50 atm. A non-intrusive, line-of-sight spectral soot emission (SSE) diagnostic technique was used to determine the temperature and the soot volume fraction of methane-air flames up to 60 atm, methane-oxygen flames up to 90 atm and ethylene-air flames up to 35 atm. The physical flame structure of the methane-air and methane-oxygen diffusion flames were characterized over the pressure range of 10 to 100 atm and up to 35 atm for ethylene-air flames. The flame height, marked by the visible soot radiation emission, remained relatively constant for methane-air and ethylene-air flames over their respected pressure ranges, while the visible flame height for the methane-oxygen flames was reduced by over 50 % between 10 and 100 atm. During methane-air experiments, observations of anomalous occurrence of liquid material formation at 60 atm and above were recorded. The maximum conversion of the carbon in the fuel to soot exhibited a strong power-law dependence on pressure. At pressures 10 to 30 atm, the pressure exponent is approximately 0.73 for methane-air flames. At higher pressures, between 30 and 60 atm, the pressure exponent is approximately 0.33. The maximum fuel carbon conversion to soot is 12.6 % at 60 atm. For methane-oxygen flames, the pressure exponent is approximately 1.2 for pressures between 10 and 40 atm. At pressures between 50 and 70 atm, the pressure exponent is about -3.8 and approximately -12 for 70 to 90 atm. The maximum fuel carbon conversion to soot is 2 % at 40 atm. For ethylene-air flames, the pressure exponent is approximately 1.4 between 10 and 30 atm. The maximu.

Oxygen-Enhanced Combustion

Oxygen-Enhanced Combustion PDF Author: Charles E. Baukal Jr.
Publisher: CRC Press
ISBN: 1439862303
Category : Science
Languages : en
Pages : 779

Get Book Here

Book Description
Combustion technology has traditionally been dominated by air/fuel combustion. However, two developments have increased the significance of oxygen-enhanced combustion-new technologies that produce oxygen less expensively and the increased importance of environmental regulations. Advantages of oxygen-enhanced combustion include less pollutant emissi

Understanding and Predicting Soot Generation in Turbulent Non-premixed Jet Flames

Understanding and Predicting Soot Generation in Turbulent Non-premixed Jet Flames PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 81

Get Book Here

Book Description
This report documents the results of a project funded by DoD's Strategic Environmental Research and Development Program (SERDP) on the science behind development of predictive models for soot emission from gas turbine engines. Measurements of soot formation were performed in laminar flat premixed flames and turbulent non-premixed jet flames at 1 atm pressure and in turbulent liquid spray flames under representative conditions for takeoff in a gas turbine engine. The laminar flames and open jet flames used both ethylene and a prevaporized JP-8 surrogate fuel composed of n-dodecane and m-xylene. The pressurized turbulent jet flame measurements used the JP-8 surrogate fuel and compared its combustion and sooting characteristics to a world-average JP-8 fuel sample. The pressurized jet flame measurements demonstrated that the surrogate was representative of JP-8, with a somewhat higher tendency to soot formation. The premixed flame measurements revealed that flame temperature has a strong impact on the rate of soot nucleation and particle coagulation, but little sensitivity in the overall trends was found with different fuels. An extensive array of non-intrusive optical and laser-based measurements was performed in turbulent non-premixed jet flames established on specially designed piloted burners. Soot concentration data was collected throughout the flames, together with instantaneous images showing the relationship between soot and the OH radical and soot and PAH. A detailed chemical kinetic mechanism for ethylene combustion, including fuel-rich chemistry and benzene formation steps, was compiled, validated, and reduced. The reduced ethylene mechanism was incorporated into a high-fidelity LES code, together with a moment-based soot model and models for thermal radiation, to evaluate the ability of the chemistry and soot models to predict soot formation in the jet diffusion flame. The LES results highlight the importance of including an optically-thick radiation model to accurately predict gas temperatures and thus soot formation rates. When including such a radiation model, the LES model predicts mean soot concentrations within 30% in the ethylene jet flame.

Computational Fluid Dynamics in Industrial Combustion

Computational Fluid Dynamics in Industrial Combustion PDF Author: Charles E. Baukal, Jr.
Publisher: CRC Press
ISBN: 9780849320002
Category : Technology & Engineering
Languages : en
Pages : 650

Get Book Here

Book Description
Although many books have been written on computational fluid dynamics (CFD) and many written on combustion, most contain very limited coverage of the combination of CFD and industrial combustion. Furthermore, most of these books are written at an advanced academic level, emphasize theory over practice, and provide little help to engineers who need to use CFD for combustion modeling. Computational Fluid Dynamics in Industrial Combustion fills this gap in the literature. Focusing on topics of interest to the practicing engineer, it codifies the many relevant books, papers, and reports written on this combined subject into a single, coherent reference. It looks at each topic from a somewhat narrow perspective to see how that topic affects modeling in industrial combustion. The editor and his team of expert authors address these topics within three main sections: Modeling Techniques-The basics of CFD modeling in combustion Industrial Applications-Specific applications of CFD in the steel, aluminum, glass, gas turbine, and petrochemical industries Advanced Techniques-Subjects rarely addressed in other texts, including design optimization, simulation, and visualization Rapid increases in computing power and significant advances in commercial CFD codes have led to a tremendous increase in the application of CFD to industrial combustion. Thorough and clearly representing the techniques and issues confronted in industry, Computational Fluid Dynamics in Industrial Combustion will help bring you quickly up to date on current methods and gain the ability to set up and solve the various types of problems you will encounter.