Formal Verification and Control of Stochastic Hybrid Systems: Model-based and Data-driven Techniques

Formal Verification and Control of Stochastic Hybrid Systems: Model-based and Data-driven Techniques PDF Author: Ameneh Nejati
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description

Formal Verification and Control of Stochastic Hybrid Systems: Model-based and Data-driven Techniques

Formal Verification and Control of Stochastic Hybrid Systems: Model-based and Data-driven Techniques PDF Author: Ameneh Nejati
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description


Stochastic Hybrid Systems

Stochastic Hybrid Systems PDF Author: Christos G. Cassandras
Publisher: CRC Press
ISBN: 1420008544
Category : Technology & Engineering
Languages : en
Pages : 300

Get Book Here

Book Description
Because they incorporate both time- and event-driven dynamics, stochastic hybrid systems (SHS) have become ubiquitous in a variety of fields, from mathematical finance to biological processes to communication networks to engineering. Comprehensively integrating numerous cutting-edge studies, Stochastic Hybrid Systems presents a captivating treatment of some of the most ambitious types of dynamic systems. Cohesively edited by leading experts in the field, the book introduces the theoretical basics, computational methods, and applications of SHS. It first discusses the underlying principles behind SHS and the main design limitations of SHS. Building on these fundamentals, the authoritative contributors present methods for computer calculations that apply SHS analysis and synthesis techniques in practice. The book concludes with examples of systems encountered in a wide range of application areas, including molecular biology, communication networks, and air traffic management. It also explains how to resolve practical problems associated with these systems. Stochastic Hybrid Systems achieves an ideal balance between a theoretical treatment of SHS and practical considerations. The book skillfully explores the interaction of physical processes with computerized equipment in an uncertain environment, enabling a better understanding of sophisticated as well as everyday devices and processes.

Stochastic Reachability Analysis of Hybrid Systems

Stochastic Reachability Analysis of Hybrid Systems PDF Author: Luminita Manuela Bujorianu
Publisher: Springer Science & Business Media
ISBN: 1447127951
Category : Science
Languages : en
Pages : 251

Get Book Here

Book Description
Stochastic reachability analysis (SRA) is a method of analyzing the behavior of control systems which mix discrete and continuous dynamics. For probabilistic discrete systems it has been shown to be a practical verification method but for stochastic hybrid systems it can be rather more. As a verification technique SRA can assess the safety and performance of, for example, autonomous systems, robot and aircraft path planning and multi-agent coordination but it can also be used for the adaptive control of such systems. Stochastic Reachability Analysis of Hybrid Systems is a self-contained and accessible introduction to this novel topic in the analysis and development of stochastic hybrid systems. Beginning with the relevant aspects of Markov models and introducing stochastic hybrid systems, the book then moves on to coverage of reachability analysis for stochastic hybrid systems. Following this build up, the core of the text first formally defines the concept of reachability in the stochastic framework and then treats issues representing the different faces of SRA: • stochastic reachability based on Markov process theory; • martingale methods; • stochastic reachability as an optimal stopping problem; and • dynamic programming. The book is rounded off by an appendix providing mathematical underpinning on subjects such as ordinary differential equations, probabilistic measure theory and stochastic modeling, which will help the non-expert-mathematician to appreciate the text. Stochastic Reachability Analysis of Hybrid Systems characterizes a highly interdisciplinary area of research and is consequently of significant interest to academic researchers and graduate students from a variety of backgrounds in control engineering, applied mathematics and computer science. The Communications and Control Engineering series reports major technological advances which have potential for great impact in the fields of communication and control. It reflects research in industrial and academic institutions around the world so that the readership can exploit new possibilities as they become available.

A Data-driven Approach for Modeling, Analysis and Control of Stochastic Hybrid Systems Using Gaussian Processes

A Data-driven Approach for Modeling, Analysis and Control of Stochastic Hybrid Systems Using Gaussian Processes PDF Author: Hamzah Abdelaziz
Publisher:
ISBN:
Category : Electronic dissertations
Languages : en
Pages :

Get Book Here

Book Description


Theory of Hybrid Systems: Deterministic and Stochastic

Theory of Hybrid Systems: Deterministic and Stochastic PDF Author: Mohamad S. Alwan
Publisher: Springer
ISBN: 9811080461
Category : Technology & Engineering
Languages : en
Pages : 252

Get Book Here

Book Description
This book is the first to present the application of the hybrid system theory to systems with EPCA (equations with piecewise continuous arguments). The hybrid system paradigm is a valuable modeling tool for describing a wide range of real-world applications. Moreover, although new technology has produced, and continues to produce highly hierarchical sophisticated machinery that cannot be analyzed as a whole system, hybrid system representation can be used to reduce the structural complexity of these systems. That is to say, hybrid systems have become a modeling priority, which in turn has led to the creation of a promising research field with several application areas. As such, the book explores recent developments in the area of deterministic and stochastic hybrid systems using the Lyapunov and Razumikhin–Lyapunov methods to investigate the systems’ properties. It also describes properties such as stability, stabilization, reliable control, H-infinity optimal control, input-to-state stability (ISS)/stabilization, state estimation, and large-scale singularly perturbed systems.

Verification and Control of Hybrid Systems

Verification and Control of Hybrid Systems PDF Author: Paulo Tabuada
Publisher: Springer
ISBN: 9781441902238
Category : Science
Languages : en
Pages : 202

Get Book Here

Book Description
Hybrid systems describe the interaction of software, described by finite models such as finite-state machines, with the physical world, described by infinite models such as differential equations. This book addresses problems of verification and controller synthesis for hybrid systems. Although these problems are very difficult to solve for general hybrid systems, several authors have identified classes of hybrid systems that admit symbolic or finite models. The novelty of the book lies on the systematic presentation of these classes of hybrid systems along with the relationships between the hybrid systems and the corresponding symbolic models. To show how the existence of symbolic models can be used for verification and controller synthesis, the book also outlines several key results for the verification and controller design of finite systems. Several examples illustrate the different methods and techniques discussed in the book.

Tools and Algorithms for the Construction and Analysis of Systems

Tools and Algorithms for the Construction and Analysis of Systems PDF Author: Tomáš Vojnar
Publisher: Springer
ISBN: 3030174654
Category : Computers
Languages : en
Pages : 413

Get Book Here

Book Description
This book is Open Access under a CC BY licence. The LNCS 11427 and 11428 proceedings set constitutes the proceedings of the 25th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2019, which took place in Prague, Czech Republic, in April 2019, held as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019. The total of 42 full and 8 short tool demo papers presented in these volumes was carefully reviewed and selected from 164 submissions. The papers are organized in topical sections as follows: Part I: SAT and SMT, SAT solving and theorem proving; verification and analysis; model checking; tool demo; and machine learning. Part II: concurrent and distributed systems; monitoring and runtime verification; hybrid and stochastic systems; synthesis; symbolic verification; and safety and fault-tolerant systems.

Control of Stochastic Hybrid Systems based on Probabilistic Reachable Set Computation

Control of Stochastic Hybrid Systems based on Probabilistic Reachable Set Computation PDF Author: Leonhard Asselborn
Publisher: kassel university press GmbH
ISBN: 3737605807
Category : Hybrid systems
Languages : en
Pages : 172

Get Book Here

Book Description
This thesis proposes an algorithmic controller synthesis based on the computation of probabilistic reachable sets for stochastic hybrid systems. Hybrid systems consist in general of a composition of discrete and continuous valued dynamics, and are able to capture a wide range of physical phenomena. The stochasticity is considered in form of normally distributed initial continuous states and normally distributed disturbances, resulting in stochastic hybrid systems. The reachable sets describe all states, which are reachable by a system for a given initialization of the system state, inputs, disturbances, and time horizon. For stochastic hybrid systems, these sets are probabilistic, since the system state and disturbance are random variables. This thesis introduces probabilistic reachable sets with a predefined confidence, which are used in an optimization based procedure for the determination of stabilizing control inputs. Besides the stabilizing property, the controlled dynamics also observes input constraints, as well as, so-called chance constraints for the continuous state. The main contribution of this thesis is the formulation of an algorithmic control procedure for each considerd type of stochastic hybrid systems, where different discrete dynamics are considered. First, a control procedure for a deterministic system with bounded disturbances is introduced, and thereafter a probabilistic distribution of the system state and the disturbance is assumed. The formulation of probabilistic reachable sets with a predefined confidence is subsequently used in a control procedure for a stochastic hybrid system, in which the switch of the continuous dynamics is externally induced. Finally, the control procedure based on reachable set computation is extended to a type of stochastic hybrid systems with autonomously switching of the continuous dynamics.

Hardware and Software: Verification and Testing

Hardware and Software: Verification and Testing PDF Author: Ofer Strichman
Publisher: Springer
ISBN: 3319703897
Category : Computers
Languages : en
Pages : 268

Get Book Here

Book Description
This book constitutes the refereed proceedings of the 13th International Haifa Verification Conference, HVC 2017, held in Haifa, Israel in November 2017.The 13 revised full papers presented together with 4 poster and 5 tool demo papers were carefully reviewed and selected from 45 submissions. They are dedicated to advance the state of the art and state of the practice in verification and testing and are discussing future directions of testing and verification for hardware, software, and complex hybrid systems.

Formal Verification and Control of Discrete-time Stochastic Systems

Formal Verification and Control of Discrete-time Stochastic Systems PDF Author: Morteza M. Lahijanian
Publisher:
ISBN:
Category :
Languages : en
Pages : 284

Get Book Here

Book Description
Abstract: This thesis establishes theoretical and computational frameworks for formal verification and control synthesis for discrete-time stochastic systems. Given a temporal logic specification, the system is analyzed to determine the probability that the specification is achieved, and an input law is automatically generated to maximize this probability. The approach consists of three main steps: constructing an abstraction of the stochastic system as a finite Markov model, mapping the given specification onto this abstraction, and finding a control policy to maximize the probability of satisfying the specification. The framework uses Probabilistic Computation Tree Logic (PCTL) as the specification language. The verification and synthesis algorithms are inspired by the field of probabilistic model checking. In abstraction, a method for the computation of the exact transition probability bounds between the regions of interest in the domain of the stochastic system is first developed. These bounds are then used to construct an Interval-valued Markov Chain (IMC) or a Bounded-parameter Markov Decision Process (BMDP) abstraction for the system. Then, a representative transition probability is used to construct an approximating Markov chain (MC) for the stochastic system. The exact bound of the approximation error and an explicit expression for its growth over time are derived. To achieve a desired error value, an adaptive refinement algorithm that takes advantage of the linear dynamics of the system is employed.To verify the properties of the continuous domain stochastic system against a finite-time PCTL specification, IMC and BMDP verification algorithms are designed. These algorithms have low computational complexity and are inspired by the MC model checking algorithms. The low computational complexity is achieved by over approximating the probabilities of satisfaction. To increase the precision of the method, two adaptive refinement procedures are proposed. Furthermore, a method of generating the control strategy that maximizes the probability of satisfaction of a PCTL specification for Markov Decision Processes (MDPs) is developed. Through a similar method, a formal synthesis framework is constructed for continuous domain stochastic systems by utilizing their BMDP abstractions. These methodologies are then applied in robotics applications as a means of automatically deploying a mobile robot subject to noisy sensors and actuators from PCTL specifications. This technique is demonstrated through simulation and experimental case studies of deployment of a robot in an indoor environment. The contributions of the thesis include verification and synthesis frameworks for discrete time stochastic linear systems, abstraction schemes for stochastic systems to MCs, IMCs, and BMDPs, model checking algorithms with low computational complexity for IMCs and BMDPs against finite-time PCTL formulas, synthesis algorithms for Markov Decision Processes (MDPs) from PCTL formulas, and a computational framework for automatic deployment of a mobile robot from PCTL specifications. The approaches were validated by simulations and experiments. The algorithms and techniques in this thesis help to make discrete-time stochastic systems a more useful and effective class of models for analysis and control of real world systems.