Author: Nik Weaver
Publisher: World Scientific
ISBN: 9814566020
Category : Mathematics
Languages : en
Pages : 153
Book Description
Ever since Paul Cohen's spectacular use of the forcing concept to prove the independence of the continuum hypothesis from the standard axioms of set theory, forcing has been seen by the general mathematical community as a subject of great intrinsic interest but one that is technically so forbidding that it is only accessible to specialists. In the past decade, a series of remarkable solutions to long-standing problems in C*-algebra using set-theoretic methods, many achieved by the author and his collaborators, have generated new interest in this subject. This is the first book aimed at explaining forcing to general mathematicians. It simultaneously makes the subject broadly accessible by explaining it in a clear, simple manner, and surveys advanced applications of set theory to mainstream topics.
Forcing For Mathematicians
Combinatorial Set Theory
Author: Lorenz J. Halbeisen
Publisher: Springer
ISBN: 3319602314
Category : Mathematics
Languages : en
Pages : 586
Book Description
This book, now in a thoroughly revised second edition, provides a comprehensive and accessible introduction to modern set theory. Following an overview of basic notions in combinatorics and first-order logic, the author outlines the main topics of classical set theory in the second part, including Ramsey theory and the axiom of choice. The revised edition contains new permutation models and recent results in set theory without the axiom of choice. The third part explains the sophisticated technique of forcing in great detail, now including a separate chapter on Suslin’s problem. The technique is used to show that certain statements are neither provable nor disprovable from the axioms of set theory. In the final part, some topics of classical set theory are revisited and further developed in light of forcing, with new chapters on Sacks Forcing and Shelah’s astonishing construction of a model with finitely many Ramsey ultrafilters. Written for graduate students in axiomatic set theory, Combinatorial Set Theory will appeal to all researchers interested in the foundations of mathematics. With extensive reference lists and historical remarks at the end of each chapter, this book is suitable for self-study.
Publisher: Springer
ISBN: 3319602314
Category : Mathematics
Languages : en
Pages : 586
Book Description
This book, now in a thoroughly revised second edition, provides a comprehensive and accessible introduction to modern set theory. Following an overview of basic notions in combinatorics and first-order logic, the author outlines the main topics of classical set theory in the second part, including Ramsey theory and the axiom of choice. The revised edition contains new permutation models and recent results in set theory without the axiom of choice. The third part explains the sophisticated technique of forcing in great detail, now including a separate chapter on Suslin’s problem. The technique is used to show that certain statements are neither provable nor disprovable from the axioms of set theory. In the final part, some topics of classical set theory are revisited and further developed in light of forcing, with new chapters on Sacks Forcing and Shelah’s astonishing construction of a model with finitely many Ramsey ultrafilters. Written for graduate students in axiomatic set theory, Combinatorial Set Theory will appeal to all researchers interested in the foundations of mathematics. With extensive reference lists and historical remarks at the end of each chapter, this book is suitable for self-study.
Set Theory and the Continuum Hypothesis
Author: Paul J. Cohen
Publisher: Courier Corporation
ISBN: 0486469212
Category : Mathematics
Languages : en
Pages : 196
Book Description
This exploration of a notorious mathematical problem is the work of the man who discovered the solution. Written by an award-winning professor at Stanford University, it employs intuitive explanations as well as detailed mathematical proofs in a self-contained treatment. This unique text and reference is suitable for students and professionals. 1966 edition. Copyright renewed 1994.
Publisher: Courier Corporation
ISBN: 0486469212
Category : Mathematics
Languages : en
Pages : 196
Book Description
This exploration of a notorious mathematical problem is the work of the man who discovered the solution. Written by an award-winning professor at Stanford University, it employs intuitive explanations as well as detailed mathematical proofs in a self-contained treatment. This unique text and reference is suitable for students and professionals. 1966 edition. Copyright renewed 1994.
Multiple Forcing
Author: Thomas J. Jech
Publisher: Cambridge University Press
ISBN: 0521266599
Category : Mathematics
Languages : en
Pages : 148
Book Description
In this 1987 text Professor Jech gives a unified treatment of the various forcing methods used in set theory, and presents their important applications. Product forcing, iterated forcing and proper forcing have proved powerful tools when studying the foundations of mathematics, for instance in consistency proofs. The book is based on graduate courses though some results are also included, making the book attractive to set theorists and logicians.
Publisher: Cambridge University Press
ISBN: 0521266599
Category : Mathematics
Languages : en
Pages : 148
Book Description
In this 1987 text Professor Jech gives a unified treatment of the various forcing methods used in set theory, and presents their important applications. Product forcing, iterated forcing and proper forcing have proved powerful tools when studying the foundations of mathematics, for instance in consistency proofs. The book is based on graduate courses though some results are also included, making the book attractive to set theorists and logicians.
Proper Forcing
Author: S. Shelah
Publisher: Springer
ISBN: 3662215438
Category : Mathematics
Languages : en
Pages : 528
Book Description
These notes can be viewed and used in several different ways, each has some justification, a collection of papers, a research monograph or a text book. The author has lectured variants of several of the chapters several times: in University of California, Berkeley, 1978, Ch. III , N, V in Ohio State Univer sity in Columbus, Ohio 1979, Ch. I,ll and in the Hebrew University 1979/80 Ch. I, II, III, V, and parts of VI. Moreover Azriel Levi, who has a much better name than the author in such matters, made notes from the lectures in the Hebrew University, rewrote them, and they ·are Chapters I, II and part of III , and were somewhat corrected and expanded by D. Drai, R. Grossberg and the author. Also most of XI §1-5 were lectured on and written up by Shai Ben David. Also our presentation is quite self-contained. We adopted an approach I heard from Baumgartner and may have been used by others: not proving that forcing work, rather take axiomatically that it does and go ahead to applying it. As a result we assume only knowledge of naive set theory (except some iso lated points later on in the book).
Publisher: Springer
ISBN: 3662215438
Category : Mathematics
Languages : en
Pages : 528
Book Description
These notes can be viewed and used in several different ways, each has some justification, a collection of papers, a research monograph or a text book. The author has lectured variants of several of the chapters several times: in University of California, Berkeley, 1978, Ch. III , N, V in Ohio State Univer sity in Columbus, Ohio 1979, Ch. I,ll and in the Hebrew University 1979/80 Ch. I, II, III, V, and parts of VI. Moreover Azriel Levi, who has a much better name than the author in such matters, made notes from the lectures in the Hebrew University, rewrote them, and they ·are Chapters I, II and part of III , and were somewhat corrected and expanded by D. Drai, R. Grossberg and the author. Also most of XI §1-5 were lectured on and written up by Shai Ben David. Also our presentation is quite self-contained. We adopted an approach I heard from Baumgartner and may have been used by others: not proving that forcing work, rather take axiomatically that it does and go ahead to applying it. As a result we assume only knowledge of naive set theory (except some iso lated points later on in the book).
A Course in Mathematical Logic for Mathematicians
Author: Yu. I. Manin
Publisher: Springer Science & Business Media
ISBN: 1441906150
Category : Mathematics
Languages : en
Pages : 389
Book Description
1. The ?rst edition of this book was published in 1977. The text has been well received and is still used, although it has been out of print for some time. In the intervening three decades, a lot of interesting things have happened to mathematical logic: (i) Model theory has shown that insights acquired in the study of formal languages could be used fruitfully in solving old problems of conventional mathematics. (ii) Mathematics has been and is moving with growing acceleration from the set-theoretic language of structures to the language and intuition of (higher) categories, leaving behind old concerns about in?nities: a new view of foundations is now emerging. (iii) Computer science, a no-nonsense child of the abstract computability theory, has been creatively dealing with old challenges and providing new ones, such as the P/NP problem. Planning additional chapters for this second edition, I have decided to focus onmodeltheory,the conspicuousabsenceofwhichinthe ?rsteditionwasnoted in several reviews, and the theory of computation, including its categorical and quantum aspects. The whole Part IV: Model Theory, is new. I am very grateful to Boris I. Zilber, who kindly agreed to write it. It may be read directly after Chapter II. The contents of the ?rst edition are basically reproduced here as Chapters I–VIII. Section IV.7, on the cardinality of the continuum, is completed by Section IV.7.3, discussing H. Woodin’s discovery.
Publisher: Springer Science & Business Media
ISBN: 1441906150
Category : Mathematics
Languages : en
Pages : 389
Book Description
1. The ?rst edition of this book was published in 1977. The text has been well received and is still used, although it has been out of print for some time. In the intervening three decades, a lot of interesting things have happened to mathematical logic: (i) Model theory has shown that insights acquired in the study of formal languages could be used fruitfully in solving old problems of conventional mathematics. (ii) Mathematics has been and is moving with growing acceleration from the set-theoretic language of structures to the language and intuition of (higher) categories, leaving behind old concerns about in?nities: a new view of foundations is now emerging. (iii) Computer science, a no-nonsense child of the abstract computability theory, has been creatively dealing with old challenges and providing new ones, such as the P/NP problem. Planning additional chapters for this second edition, I have decided to focus onmodeltheory,the conspicuousabsenceofwhichinthe ?rsteditionwasnoted in several reviews, and the theory of computation, including its categorical and quantum aspects. The whole Part IV: Model Theory, is new. I am very grateful to Boris I. Zilber, who kindly agreed to write it. It may be read directly after Chapter II. The contents of the ?rst edition are basically reproduced here as Chapters I–VIII. Section IV.7, on the cardinality of the continuum, is completed by Section IV.7.3, discussing H. Woodin’s discovery.
Mathematics for Human Flourishing
Author: Francis Su
Publisher: Yale University Press
ISBN: 0300248814
Category : Mathematics
Languages : en
Pages : 287
Book Description
Winner of the Mathematics Association of America's 2021 Euler Book Prize, this is an inclusive vision of mathematics—its beauty, its humanity, and its power to build virtues that help us all flourish“This is perhaps the most important mathematics book of our time. Francis Su shows mathematics is an experience of the mind and, most important, of the heart.”—James Tanton, Global Math Project"A good book is an entertaining read. A great book holds up a mirror that allows us to more clearly see ourselves and the world we live in. Francis Su’s Mathematics for Human Flourishing is both a good book and a great book."—MAA Reviews For mathematician Francis Su, a society without mathematical affection is like a city without concerts, parks, or museums. To miss out on mathematics is to live without experiencing some of humanity’s most beautiful ideas.In this profound book, written for a wide audience but especially for those disenchanted by their past experiences, an award‑winning mathematician and educator weaves parables, puzzles, and personal reflections to show how mathematics meets basic human desires—such as for play, beauty, freedom, justice, and love—and cultivates virtues essential for human flourishing. These desires and virtues, and the stories told here, reveal how mathematics is intimately tied to being human. Some lessons emerge from those who have struggled, including philosopher Simone Weil, whose own mathematical contributions were overshadowed by her brother’s, and Christopher Jackson, who discovered mathematics as an inmate in a federal prison. Christopher’s letters to the author appear throughout the book and show how this intellectual pursuit can—and must—be open to all.
Publisher: Yale University Press
ISBN: 0300248814
Category : Mathematics
Languages : en
Pages : 287
Book Description
Winner of the Mathematics Association of America's 2021 Euler Book Prize, this is an inclusive vision of mathematics—its beauty, its humanity, and its power to build virtues that help us all flourish“This is perhaps the most important mathematics book of our time. Francis Su shows mathematics is an experience of the mind and, most important, of the heart.”—James Tanton, Global Math Project"A good book is an entertaining read. A great book holds up a mirror that allows us to more clearly see ourselves and the world we live in. Francis Su’s Mathematics for Human Flourishing is both a good book and a great book."—MAA Reviews For mathematician Francis Su, a society without mathematical affection is like a city without concerts, parks, or museums. To miss out on mathematics is to live without experiencing some of humanity’s most beautiful ideas.In this profound book, written for a wide audience but especially for those disenchanted by their past experiences, an award‑winning mathematician and educator weaves parables, puzzles, and personal reflections to show how mathematics meets basic human desires—such as for play, beauty, freedom, justice, and love—and cultivates virtues essential for human flourishing. These desires and virtues, and the stories told here, reveal how mathematics is intimately tied to being human. Some lessons emerge from those who have struggled, including philosopher Simone Weil, whose own mathematical contributions were overshadowed by her brother’s, and Christopher Jackson, who discovered mathematics as an inmate in a federal prison. Christopher’s letters to the author appear throughout the book and show how this intellectual pursuit can—and must—be open to all.
Set Theory for the Working Mathematician
Author: Krzysztof Ciesielski
Publisher: Cambridge University Press
ISBN: 9780521594653
Category : Mathematics
Languages : en
Pages : 256
Book Description
Presents those methods of modern set theory most applicable to other areas of pure mathematics.
Publisher: Cambridge University Press
ISBN: 9780521594653
Category : Mathematics
Languages : en
Pages : 256
Book Description
Presents those methods of modern set theory most applicable to other areas of pure mathematics.
Set Theory and the Continuum Problem
Author: Raymond M. Smullyan
Publisher:
ISBN: 9780486474847
Category : Continuum hypothesis
Languages : en
Pages : 0
Book Description
A lucid, elegant, and complete survey of set theory, this three-part treatment explores axiomatic set theory, the consistency of the continuum hypothesis, and forcing and independence results. 1996 edition.
Publisher:
ISBN: 9780486474847
Category : Continuum hypothesis
Languages : en
Pages : 0
Book Description
A lucid, elegant, and complete survey of set theory, this three-part treatment explores axiomatic set theory, the consistency of the continuum hypothesis, and forcing and independence results. 1996 edition.
The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal
Author: W. Hugh Woodin
Publisher: Walter de Gruyter
ISBN: 3110804735
Category : Mathematics
Languages : en
Pages : 944
Book Description
The series is devoted to the publication of high-level monographs on all areas of mathematical logic and its applications. It is addressed to advanced students and research mathematicians, and may also serve as a guide for lectures and for seminars at the graduate level.
Publisher: Walter de Gruyter
ISBN: 3110804735
Category : Mathematics
Languages : en
Pages : 944
Book Description
The series is devoted to the publication of high-level monographs on all areas of mathematical logic and its applications. It is addressed to advanced students and research mathematicians, and may also serve as a guide for lectures and for seminars at the graduate level.