Author: Eric A. Eager
Publisher: "O'Reilly Media, Inc."
ISBN: 1492099597
Category : Computers
Languages : en
Pages : 352
Book Description
Baseball is not the only sport to use "moneyball." American football fans, teams, and gamblers are increasingly using data to gain an edge against the competition. Professional and college teams use data to help select players and identify team needs. Fans use data to guide fantasy team picks and strategies. Sports bettors and fantasy football players are using data to help inform decision making. This concise book provides a clear introduction to using statistical models to analyze football data. Whether your goal is to produce a winning team, dominate your fantasy football league, qualify for an entry-level football analyst position, or simply learn R and Python using fun example cases, this book is your starting place. You'll learn how to: Apply basic statistical concepts to football datasets Describe football data with quantitative methods Create efficient workflows that offer reproducible results Use data science skills such as web scraping, manipulating data, and plotting data Implement statistical models for football data Link data summaries and model outputs to create reports or presentations using tools such as R Markdown and R Shiny And more
Football Analytics with Python & R
Author: Eric A. Eager
Publisher: "O'Reilly Media, Inc."
ISBN: 1492099597
Category : Computers
Languages : en
Pages : 352
Book Description
Baseball is not the only sport to use "moneyball." American football fans, teams, and gamblers are increasingly using data to gain an edge against the competition. Professional and college teams use data to help select players and identify team needs. Fans use data to guide fantasy team picks and strategies. Sports bettors and fantasy football players are using data to help inform decision making. This concise book provides a clear introduction to using statistical models to analyze football data. Whether your goal is to produce a winning team, dominate your fantasy football league, qualify for an entry-level football analyst position, or simply learn R and Python using fun example cases, this book is your starting place. You'll learn how to: Apply basic statistical concepts to football datasets Describe football data with quantitative methods Create efficient workflows that offer reproducible results Use data science skills such as web scraping, manipulating data, and plotting data Implement statistical models for football data Link data summaries and model outputs to create reports or presentations using tools such as R Markdown and R Shiny And more
Publisher: "O'Reilly Media, Inc."
ISBN: 1492099597
Category : Computers
Languages : en
Pages : 352
Book Description
Baseball is not the only sport to use "moneyball." American football fans, teams, and gamblers are increasingly using data to gain an edge against the competition. Professional and college teams use data to help select players and identify team needs. Fans use data to guide fantasy team picks and strategies. Sports bettors and fantasy football players are using data to help inform decision making. This concise book provides a clear introduction to using statistical models to analyze football data. Whether your goal is to produce a winning team, dominate your fantasy football league, qualify for an entry-level football analyst position, or simply learn R and Python using fun example cases, this book is your starting place. You'll learn how to: Apply basic statistical concepts to football datasets Describe football data with quantitative methods Create efficient workflows that offer reproducible results Use data science skills such as web scraping, manipulating data, and plotting data Implement statistical models for football data Link data summaries and model outputs to create reports or presentations using tools such as R Markdown and R Shiny And more
Data Analytics in Football
Author: Daniel Memmert
Publisher: Routledge
ISBN: 1351210149
Category : Sports & Recreation
Languages : en
Pages : 247
Book Description
Data Analytics in Football provides students, researchers and coaches with a firm grounding in the principles of modern performance analysis. It offers an insight into the use of positional data, exploring how it can be collected, modelled, analysed and interpreted. Introducing cutting-edge methods, the book challenges long-held assumptions and encourages a new way of thinking about football analysis. Based on data collected from the German Bundesliga and the UEFA Champions League, the book seeks to define the role of positional data in football match analysis by exploring topics such as: What is positional data analysis and how did it emerge from conventional match analysis? How can positional data be collected and which technologies can be used? What are the benefits of a data-driven approach to decision making in football? What Key Performance Indicators based on positional data should be used? How can traditional match analysis be complemented by using positional data and advanced KPIs? How can these new methods evolve in the future? Accessibly written, packed full of examples from elite football and supplemented with expert interviews (Ralf Rangnick, Urs Siegenthaler and others), Data Analytics in Football is a thought-provoking, rigorously evidence-based guide to the use of data analytics in football performance analysis. As such, it is a vital resource for any student, researcher or coach interested in performance analysis and skill acquisition, or anyone interested in football more generally.
Publisher: Routledge
ISBN: 1351210149
Category : Sports & Recreation
Languages : en
Pages : 247
Book Description
Data Analytics in Football provides students, researchers and coaches with a firm grounding in the principles of modern performance analysis. It offers an insight into the use of positional data, exploring how it can be collected, modelled, analysed and interpreted. Introducing cutting-edge methods, the book challenges long-held assumptions and encourages a new way of thinking about football analysis. Based on data collected from the German Bundesliga and the UEFA Champions League, the book seeks to define the role of positional data in football match analysis by exploring topics such as: What is positional data analysis and how did it emerge from conventional match analysis? How can positional data be collected and which technologies can be used? What are the benefits of a data-driven approach to decision making in football? What Key Performance Indicators based on positional data should be used? How can traditional match analysis be complemented by using positional data and advanced KPIs? How can these new methods evolve in the future? Accessibly written, packed full of examples from elite football and supplemented with expert interviews (Ralf Rangnick, Urs Siegenthaler and others), Data Analytics in Football is a thought-provoking, rigorously evidence-based guide to the use of data analytics in football performance analysis. As such, it is a vital resource for any student, researcher or coach interested in performance analysis and skill acquisition, or anyone interested in football more generally.
Python and R for the Modern Data Scientist
Author: Rick J. Scavetta
Publisher: "O'Reilly Media, Inc."
ISBN: 1492093378
Category : Computers
Languages : en
Pages : 199
Book Description
Success in data science depends on the flexible and appropriate use of tools. That includes Python and R, two of the foundational programming languages in the field. This book guides data scientists from the Python and R communities along the path to becoming bilingual. By recognizing the strengths of both languages, you'll discover new ways to accomplish data science tasks and expand your skill set. Authors Rick Scavetta and Boyan Angelov explain the parallel structures of these languages and highlight where each one excels, whether it's their linguistic features or the powers of their open source ecosystems. You'll learn how to use Python and R together in real-world settings and broaden your job opportunities as a bilingual data scientist. Learn Python and R from the perspective of your current language Understand the strengths and weaknesses of each language Identify use cases where one language is better suited than the other Understand the modern open source ecosystem available for both, including packages, frameworks, and workflows Learn how to integrate R and Python in a single workflow Follow a case study that demonstrates ways to use these languages together
Publisher: "O'Reilly Media, Inc."
ISBN: 1492093378
Category : Computers
Languages : en
Pages : 199
Book Description
Success in data science depends on the flexible and appropriate use of tools. That includes Python and R, two of the foundational programming languages in the field. This book guides data scientists from the Python and R communities along the path to becoming bilingual. By recognizing the strengths of both languages, you'll discover new ways to accomplish data science tasks and expand your skill set. Authors Rick Scavetta and Boyan Angelov explain the parallel structures of these languages and highlight where each one excels, whether it's their linguistic features or the powers of their open source ecosystems. You'll learn how to use Python and R together in real-world settings and broaden your job opportunities as a bilingual data scientist. Learn Python and R from the perspective of your current language Understand the strengths and weaknesses of each language Identify use cases where one language is better suited than the other Understand the modern open source ecosystem available for both, including packages, frameworks, and workflows Learn how to integrate R and Python in a single workflow Follow a case study that demonstrates ways to use these languages together
Mathletics
Author: Wayne L. Winston
Publisher: Princeton University Press
ISBN: 1400842077
Category : Mathematics
Languages : en
Pages : 391
Book Description
How math can be used to improve performance and predict outcomes in professional sports Mathletics is a remarkably entertaining book that shows readers how to use simple mathematics to analyze a range of statistical and probability-related questions in professional baseball, basketball, and football, and in sports gambling. How does professional baseball evaluate hitters? Is a singles hitter like Wade Boggs more valuable than a power hitter like David Ortiz? Should NFL teams pass or run more often on first downs? Could professional basketball have used statistics to expose the crooked referee Tim Donaghy? Does money buy performance in professional sports? In Mathletics, Wayne Winston describes the mathematical methods that top coaches and managers use to evaluate players and improve team performance, and gives math enthusiasts the practical tools they need to enhance their understanding and enjoyment of their favorite sports—and maybe even gain the outside edge to winning bets. Mathletics blends fun math problems with sports stories of actual games, teams, and players, along with personal anecdotes from Winston's work as a sports consultant. Winston uses easy-to-read tables and illustrations to illuminate the techniques and ideas he presents, and all the necessary math concepts—such as arithmetic, basic statistics and probability, and Monte Carlo simulations—are fully explained in the examples. After reading Mathletics, you will understand why baseball teams should almost never bunt, why football overtime systems are unfair, why points, rebounds, and assists aren't enough to determine who's the NBA's best player—and much, much more. In a new epilogue, Winston discusses the stats and numerical analysis behind some recent sporting events, such as how the Dallas Mavericks used analytics to become the 2011 NBA champions.
Publisher: Princeton University Press
ISBN: 1400842077
Category : Mathematics
Languages : en
Pages : 391
Book Description
How math can be used to improve performance and predict outcomes in professional sports Mathletics is a remarkably entertaining book that shows readers how to use simple mathematics to analyze a range of statistical and probability-related questions in professional baseball, basketball, and football, and in sports gambling. How does professional baseball evaluate hitters? Is a singles hitter like Wade Boggs more valuable than a power hitter like David Ortiz? Should NFL teams pass or run more often on first downs? Could professional basketball have used statistics to expose the crooked referee Tim Donaghy? Does money buy performance in professional sports? In Mathletics, Wayne Winston describes the mathematical methods that top coaches and managers use to evaluate players and improve team performance, and gives math enthusiasts the practical tools they need to enhance their understanding and enjoyment of their favorite sports—and maybe even gain the outside edge to winning bets. Mathletics blends fun math problems with sports stories of actual games, teams, and players, along with personal anecdotes from Winston's work as a sports consultant. Winston uses easy-to-read tables and illustrations to illuminate the techniques and ideas he presents, and all the necessary math concepts—such as arithmetic, basic statistics and probability, and Monte Carlo simulations—are fully explained in the examples. After reading Mathletics, you will understand why baseball teams should almost never bunt, why football overtime systems are unfair, why points, rebounds, and assists aren't enough to determine who's the NBA's best player—and much, much more. In a new epilogue, Winston discusses the stats and numerical analysis behind some recent sporting events, such as how the Dallas Mavericks used analytics to become the 2011 NBA champions.
Sports Analytics and Data Science
Author: Thomas W. Miller
Publisher: FT Press
ISBN: 0133887413
Category : Business & Economics
Languages : en
Pages : 576
Book Description
This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. This up-to-the-minute reference will help you master all three facets of sports analytics — and use it to win! Sports Analytics and Data Science is the most accessible and practical guide to sports analytics for everyone who cares about winning and everyone who is interested in data science. You’ll discover how successful sports analytics blends business and sports savvy, modern information technology, and sophisticated modeling techniques. You’ll master the discipline through realistic sports vignettes and intuitive data visualizations–not complex math. Every chapter focuses on one key sports analytics application. Miller guides you through assessing players and teams, predicting scores and making game-day decisions, crafting brands and marketing messages, increasing revenue and profitability, and much more. Step by step, you’ll learn how analysts transform raw data and analytical models into wins: both on the field and in any sports business.
Publisher: FT Press
ISBN: 0133887413
Category : Business & Economics
Languages : en
Pages : 576
Book Description
This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. This up-to-the-minute reference will help you master all three facets of sports analytics — and use it to win! Sports Analytics and Data Science is the most accessible and practical guide to sports analytics for everyone who cares about winning and everyone who is interested in data science. You’ll discover how successful sports analytics blends business and sports savvy, modern information technology, and sophisticated modeling techniques. You’ll master the discipline through realistic sports vignettes and intuitive data visualizations–not complex math. Every chapter focuses on one key sports analytics application. Miller guides you through assessing players and teams, predicting scores and making game-day decisions, crafting brands and marketing messages, increasing revenue and profitability, and much more. Step by step, you’ll learn how analysts transform raw data and analytical models into wins: both on the field and in any sports business.
Football Analytics with Python & R
Author: Eric A. Eager
Publisher: "O'Reilly Media, Inc."
ISBN: 1492099589
Category : Mathematics
Languages : en
Pages : 361
Book Description
Baseball is not the only sport to use "moneyball." American football fans, teams, and gamblers are increasingly using data to gain an edge against the competition. Professional and college teams use data to help select players and identify team needs. Fans use data to guide fantasy team picks and strategies. Sports bettors and fantasy football players are using data to help inform decision making. This concise book provides a clear introduction to using statistical models to analyze football data. Whether your goal is to produce a winning team, dominate your fantasy football league, qualify for an entry-level football analyst position, or simply learn R and Python using fun example cases, this book is your starting place. You'll learn how to: Apply basic statistical concepts to football datasets Describe football data with quantitative methods Create efficient workflows that offer reproducible results Use data science skills such as web scraping, manipulating data, and plotting data Implement statistical models for football data Link data summaries and model outputs to create reports or presentations using tools such as R Markdown and R Shiny And more
Publisher: "O'Reilly Media, Inc."
ISBN: 1492099589
Category : Mathematics
Languages : en
Pages : 361
Book Description
Baseball is not the only sport to use "moneyball." American football fans, teams, and gamblers are increasingly using data to gain an edge against the competition. Professional and college teams use data to help select players and identify team needs. Fans use data to guide fantasy team picks and strategies. Sports bettors and fantasy football players are using data to help inform decision making. This concise book provides a clear introduction to using statistical models to analyze football data. Whether your goal is to produce a winning team, dominate your fantasy football league, qualify for an entry-level football analyst position, or simply learn R and Python using fun example cases, this book is your starting place. You'll learn how to: Apply basic statistical concepts to football datasets Describe football data with quantitative methods Create efficient workflows that offer reproducible results Use data science skills such as web scraping, manipulating data, and plotting data Implement statistical models for football data Link data summaries and model outputs to create reports or presentations using tools such as R Markdown and R Shiny And more
Sports Analytics
Author: Benjamin C. Alamar
Publisher: Columbia University Press
ISBN: 023155589X
Category : Sports & Recreation
Languages : en
Pages : 219
Book Description
Data and analytics have the potential to provide sports organizations with a competitive advantage both on and off the field. Yet even as the use of analytics in sports has become commonplace, teams regularly find themselves making big investments without significant payoff. This book is a practical, nontechnical guide to incorporating sports data into decision making, giving leaders the knowledge they need to maximize their organization’s investment in analytics. Benjamin C. Alamar—a leading expert who has built high-performing analytics groups—surveys the current state of the use of data in sports, including both specifics around the tools and how to deploy them most effectively. Sports Analytics offers a clear, easily digestible overview of data management, statistical models, and information systems and a detailed understanding of their vast possibilities. It walks readers through the essentials of understanding the value of different types of data and strategies for building and managing an analytics team. Throughout, Alamar illustrates the value of analytics with real-world examples and case studies from both the sports and business sides. Sports Analytics has guided a range of sports professionals to success since its original publication in 2013. This second edition adds examples and strategies that focus on using data on the business side of a sports organization, provides concrete strategies for incorporating different types of data into decision making, and updates all discussions for the rapid technological developments of the last decade.
Publisher: Columbia University Press
ISBN: 023155589X
Category : Sports & Recreation
Languages : en
Pages : 219
Book Description
Data and analytics have the potential to provide sports organizations with a competitive advantage both on and off the field. Yet even as the use of analytics in sports has become commonplace, teams regularly find themselves making big investments without significant payoff. This book is a practical, nontechnical guide to incorporating sports data into decision making, giving leaders the knowledge they need to maximize their organization’s investment in analytics. Benjamin C. Alamar—a leading expert who has built high-performing analytics groups—surveys the current state of the use of data in sports, including both specifics around the tools and how to deploy them most effectively. Sports Analytics offers a clear, easily digestible overview of data management, statistical models, and information systems and a detailed understanding of their vast possibilities. It walks readers through the essentials of understanding the value of different types of data and strategies for building and managing an analytics team. Throughout, Alamar illustrates the value of analytics with real-world examples and case studies from both the sports and business sides. Sports Analytics has guided a range of sports professionals to success since its original publication in 2013. This second edition adds examples and strategies that focus on using data on the business side of a sports organization, provides concrete strategies for incorporating different types of data into decision making, and updates all discussions for the rapid technological developments of the last decade.
Behavioral Data Analysis with R and Python
Author: Florent Buisson
Publisher: "O'Reilly Media, Inc."
ISBN: 1492061344
Category : Business & Economics
Languages : en
Pages : 361
Book Description
Harness the full power of the behavioral data in your company by learning tools specifically designed for behavioral data analysis. Common data science algorithms and predictive analytics tools treat customer behavioral data, such as clicks on a website or purchases in a supermarket, the same as any other data. Instead, this practical guide introduces powerful methods specifically tailored for behavioral data analysis. Advanced experimental design helps you get the most out of your A/B tests, while causal diagrams allow you to tease out the causes of behaviors even when you can't run experiments. Written in an accessible style for data scientists, business analysts, and behavioral scientists, thispractical book provides complete examples and exercises in R and Python to help you gain more insight from your data--immediately. Understand the specifics of behavioral data Explore the differences between measurement and prediction Learn how to clean and prepare behavioral data Design and analyze experiments to drive optimal business decisions Use behavioral data to understand and measure cause and effect Segment customers in a transparent and insightful way
Publisher: "O'Reilly Media, Inc."
ISBN: 1492061344
Category : Business & Economics
Languages : en
Pages : 361
Book Description
Harness the full power of the behavioral data in your company by learning tools specifically designed for behavioral data analysis. Common data science algorithms and predictive analytics tools treat customer behavioral data, such as clicks on a website or purchases in a supermarket, the same as any other data. Instead, this practical guide introduces powerful methods specifically tailored for behavioral data analysis. Advanced experimental design helps you get the most out of your A/B tests, while causal diagrams allow you to tease out the causes of behaviors even when you can't run experiments. Written in an accessible style for data scientists, business analysts, and behavioral scientists, thispractical book provides complete examples and exercises in R and Python to help you gain more insight from your data--immediately. Understand the specifics of behavioral data Explore the differences between measurement and prediction Learn how to clean and prepare behavioral data Design and analyze experiments to drive optimal business decisions Use behavioral data to understand and measure cause and effect Segment customers in a transparent and insightful way
Sport Business Analytics
Author: C. Keith Harrison
Publisher: CRC Press
ISBN: 1498761275
Category : Computers
Languages : en
Pages : 260
Book Description
Developing and implementing a systematic analytics strategy can result in a sustainable competitive advantage within the sport business industry. This timely and relevant book provides practical strategies to collect data and then convert that data into meaningful, value-added information and actionable insights. Its primary objective is to help sport business organizations utilize data-driven decision-making to generate optimal revenue from such areas as ticket sales and corporate partnerships. To that end, the book includes in-depth case studies from such leading sports organizations as the Orlando Magic, Tampa Bay Buccaneers, Duke University, and the Aspire Group. The core purpose of sport business analytics is to convert raw data into information that enables sport business professionals to make strategic business decisions that result in improved company financial performance and a measurable and sustainable competitive advantage. Readers will learn about the role of big data and analytics in: Ticket pricing Season ticket member retention Fan engagement Sponsorship valuation Customer relationship management Digital marketing Market research Data visualization. This book examines changes in the ticketing marketplace and spotlights innovative ticketing strategies used in various sport organizations. It shows how to engage fans with social media and digital analytics, presents techniques to analyze engagement and marketing strategies, and explains how to utilize analytics to leverage fan engagement to enhance revenue for sport organizations. Filled with insightful case studies, this book benefits both sports business professionals and students. The concluding chapter on teaching sport analytics further enhances its value to academics.
Publisher: CRC Press
ISBN: 1498761275
Category : Computers
Languages : en
Pages : 260
Book Description
Developing and implementing a systematic analytics strategy can result in a sustainable competitive advantage within the sport business industry. This timely and relevant book provides practical strategies to collect data and then convert that data into meaningful, value-added information and actionable insights. Its primary objective is to help sport business organizations utilize data-driven decision-making to generate optimal revenue from such areas as ticket sales and corporate partnerships. To that end, the book includes in-depth case studies from such leading sports organizations as the Orlando Magic, Tampa Bay Buccaneers, Duke University, and the Aspire Group. The core purpose of sport business analytics is to convert raw data into information that enables sport business professionals to make strategic business decisions that result in improved company financial performance and a measurable and sustainable competitive advantage. Readers will learn about the role of big data and analytics in: Ticket pricing Season ticket member retention Fan engagement Sponsorship valuation Customer relationship management Digital marketing Market research Data visualization. This book examines changes in the ticketing marketplace and spotlights innovative ticketing strategies used in various sport organizations. It shows how to engage fans with social media and digital analytics, presents techniques to analyze engagement and marketing strategies, and explains how to utilize analytics to leverage fan engagement to enhance revenue for sport organizations. Filled with insightful case studies, this book benefits both sports business professionals and students. The concluding chapter on teaching sport analytics further enhances its value to academics.
Extending Power BI with Python and R
Author: Luca Zavarella
Publisher: Packt Publishing Ltd
ISBN: 1801076677
Category : Computers
Languages : en
Pages : 559
Book Description
Perform more advanced analysis and manipulation of your data beyond what Power BI can do to unlock valuable insights using Python and R Key FeaturesGet the most out of Python and R with Power BI by implementing non-trivial codeLeverage the toolset of Python and R chunks to inject scripts into your Power BI dashboardsImplement new techniques for ingesting, enriching, and visualizing data with Python and R in Power BIBook Description Python and R allow you to extend Power BI capabilities to simplify ingestion and transformation activities, enhance dashboards, and highlight insights. With this book, you'll be able to make your artifacts far more interesting and rich in insights using analytical languages. You'll start by learning how to configure your Power BI environment to use your Python and R scripts. The book then explores data ingestion and data transformation extensions, and advances to focus on data augmentation and data visualization. You'll understand how to import data from external sources and transform them using complex algorithms. The book helps you implement personal data de-identification methods such as pseudonymization, anonymization, and masking in Power BI. You'll be able to call external APIs to enrich your data much more quickly using Python programming and R programming. Later, you'll learn advanced Python and R techniques to perform in-depth analysis and extract valuable information using statistics and machine learning. You'll also understand the main statistical features of datasets by plotting multiple visual graphs in the process of creating a machine learning model. By the end of this book, you'll be able to enrich your Power BI data models and visualizations using complex algorithms in Python and R. What you will learnDiscover best practices for using Python and R in Power BI productsUse Python and R to perform complex data manipulations in Power BIApply data anonymization and data pseudonymization in Power BILog data and load large datasets in Power BI using Python and REnrich your Power BI dashboards using external APIs and machine learning modelsExtract insights from your data using linear optimization and other algorithmsHandle outliers and missing values for multivariate and time-series dataCreate any visualization, as complex as you want, using R scriptsWho this book is for This book is for business analysts, business intelligence professionals, and data scientists who already use Microsoft Power BI and want to add more value to their analysis using Python and R. Working knowledge of Power BI is required to make the most of this book. Basic knowledge of Python and R will also be helpful.
Publisher: Packt Publishing Ltd
ISBN: 1801076677
Category : Computers
Languages : en
Pages : 559
Book Description
Perform more advanced analysis and manipulation of your data beyond what Power BI can do to unlock valuable insights using Python and R Key FeaturesGet the most out of Python and R with Power BI by implementing non-trivial codeLeverage the toolset of Python and R chunks to inject scripts into your Power BI dashboardsImplement new techniques for ingesting, enriching, and visualizing data with Python and R in Power BIBook Description Python and R allow you to extend Power BI capabilities to simplify ingestion and transformation activities, enhance dashboards, and highlight insights. With this book, you'll be able to make your artifacts far more interesting and rich in insights using analytical languages. You'll start by learning how to configure your Power BI environment to use your Python and R scripts. The book then explores data ingestion and data transformation extensions, and advances to focus on data augmentation and data visualization. You'll understand how to import data from external sources and transform them using complex algorithms. The book helps you implement personal data de-identification methods such as pseudonymization, anonymization, and masking in Power BI. You'll be able to call external APIs to enrich your data much more quickly using Python programming and R programming. Later, you'll learn advanced Python and R techniques to perform in-depth analysis and extract valuable information using statistics and machine learning. You'll also understand the main statistical features of datasets by plotting multiple visual graphs in the process of creating a machine learning model. By the end of this book, you'll be able to enrich your Power BI data models and visualizations using complex algorithms in Python and R. What you will learnDiscover best practices for using Python and R in Power BI productsUse Python and R to perform complex data manipulations in Power BIApply data anonymization and data pseudonymization in Power BILog data and load large datasets in Power BI using Python and REnrich your Power BI dashboards using external APIs and machine learning modelsExtract insights from your data using linear optimization and other algorithmsHandle outliers and missing values for multivariate and time-series dataCreate any visualization, as complex as you want, using R scriptsWho this book is for This book is for business analysts, business intelligence professionals, and data scientists who already use Microsoft Power BI and want to add more value to their analysis using Python and R. Working knowledge of Power BI is required to make the most of this book. Basic knowledge of Python and R will also be helpful.