Rock Fractures and Fluid Flow

Rock Fractures and Fluid Flow PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309049962
Category : Science
Languages : en
Pages : 568

Get Book Here

Book Description
Scientific understanding of fluid flow in rock fracturesâ€"a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storageâ€"has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.

Rock Fractures and Fluid Flow

Rock Fractures and Fluid Flow PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309049962
Category : Science
Languages : en
Pages : 568

Get Book Here

Book Description
Scientific understanding of fluid flow in rock fracturesâ€"a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storageâ€"has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.

Mass Transfer Dynamics of Contaminants in Fractured Media

Mass Transfer Dynamics of Contaminants in Fractured Media PDF Author: Zhi Dou
Publisher: Springer Nature
ISBN: 9819991870
Category :
Languages : en
Pages : 210

Get Book Here

Book Description


Mult-scale Modeling of the Coupled Fluid Transport and Permeability Alteration in Naturally Fractured Porous Media

Mult-scale Modeling of the Coupled Fluid Transport and Permeability Alteration in Naturally Fractured Porous Media PDF Author: Mohammed Ghalib A. Alhashim
Publisher:
ISBN:
Category :
Languages : en
Pages : 586

Get Book Here

Book Description
The injection of a high pressure fluid in a porous medium to activate pre-existing fractures is commonly used in the development of stimulated shale gas formations and engineered geothermal systems (EGS). Understanding the coupling between fluid transport and the activation of the fractures is essential in optimizing the stimulation process and modeling convective transport in hydraulically stimulated reservoirs. Based on the assumption that a fracture slips and activates when the fluid pressure is larger than a critical value that depends on the fracture's orientation with respect to the principal stress field, the effects of stress anisotropy, injection conditions, and the connectivity of the pre-existing fractures on the morphology of the cluster of activated fractures are analyzed. Depending on the importance of the viscous pressure drop, three growth regimes denoted as the homogenous, fractal, and intermediate regimes are identified. In the fractal and intermediate regimes, the injected fluid propagates in a preferred direction when the pre-existing fractures are well-connected and the tendency of stress anisotropy to activate favorably oriented fractures becomes pronounced. In the homogeneous regime, the viscous pressure drop is negligible over the correlation length of the pre-existing fractures but is important over the size of the stimulated reservoir. In this regime, the effects of stress anisotropy are overcome by the viscous forces and a homogeneous cluster is formed whose growth follows an isotropic linear diffusion equation. In the fractal regime, the viscous pressure drop is negligible over the size of the stimulated region. Thus, the injected fluid activates and flows through the least resistance accessible fractures forming a fractal network. For poorly connected pre-existing fractures, the activation process belongs to the same universality class as random percolation. Using large-cell Monte Carlo renormalization group, a cross-over that does not change the universality class is identified as the radius of cluster exceeds the correlation length of the pre-existing fractures. An interesting intermediate regime develops when the viscous pressure drop is negligible over length scales that are larger than the pre-existing fractures' correlation length but is important over the stimulated reservoir. In this regime, the network is fractal at small length scales but is heterogeneous at larger scales. For poorly connected pre-existing fractures where the effects of stress anisotropy are negligible, a continuum model of fluid transport in the cluster of activated fractures is developed where percolation theory is used to relate the effective porosity and permeability of the network to the local fluid pressure. The model is tested using a discrete fracture network simulations. Finally, these insights about the connectivity of activated fractures are applied to analyze the thermal draw-down of EGS systems. It is shown that the properties of the shortest path such as its average residence time and the frequency of exchanging fluid flowing through it with other intersecting paths control the thermal drawdown. A homogeneous network performs the best followed by a fractal cluster; an intermediate network has the poorest performance.

Scaling Methods in Soil Physics

Scaling Methods in Soil Physics PDF Author: Yakov Pachepsky
Publisher: CRC Press
ISBN: 0203011066
Category : Science
Languages : en
Pages : 470

Get Book Here

Book Description
The scaling issue remains one of the largest problems in soil science and hydrology. This book is a unique compendium of ideas, conceptual approaches, techniques, and methodologies for scaling soil physical properties. Scaling Methods in Soil Physics covers many methods of scaling that will be useful in helping scientists across a range of soil-rel

Mechanics Of Porous And Fractured Media

Mechanics Of Porous And Fractured Media PDF Author: V N Nikolaevskij
Publisher: World Scientific
ISBN: 9814507768
Category : Science
Languages : en
Pages : 491

Get Book Here

Book Description
In a significantly revised English edition the text provides a solid course on mechanics of porous & fractured media (mainly of geomaterials). Part I focuses on the continuum theory of the dynamic fracture and deformation of bodies with complex rheology, including the dilatancy theory. Applications are connected with dynamics large scale processes, blast waves and with structure of the Earth's crust. Part II focuses on the effects of fluid saturation of pores and transfer phenomena. Applications are connected with seismic waves, oil and gascondensate recovery, explosion works, physico-chemical processes.

Flow and Contaminant Transport in Fractured Rock

Flow and Contaminant Transport in Fractured Rock PDF Author: Jacob Bear
Publisher: Academic Press
ISBN: 0080916473
Category : Technology & Engineering
Languages : en
Pages : 575

Get Book Here

Book Description
In the past two or three decades, fractured rock domains have received increasing attention not only in reservoir engineering and hydrology, but also in connection with geological isolation of radioactive waste. Locations in both the saturated and unsaturated zones have been under consideration because such repositories are sources of heat and potential sources of groundwater contamination. Thus, in addition to the transport of mass of fluid phases in single and multiphase flow, the issues of heat transport and mass transport of components have to be addressed.

Characterization, Modeling, Monitoring, and Remediation of Fractured Rock

Characterization, Modeling, Monitoring, and Remediation of Fractured Rock PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309373727
Category : Science
Languages : en
Pages : 177

Get Book Here

Book Description
Fractured rock is the host or foundation for innumerable engineered structures related to energy, water, waste, and transportation. Characterizing, modeling, and monitoring fractured rock sites is critical to the functioning of those infrastructure, as well as to optimizing resource recovery and contaminant management. Characterization, Modeling, Monitoring, and Remediation of Fractured Rock examines the state of practice and state of art in the characterization of fractured rock and the chemical and biological processes related to subsurface contaminant fate and transport. This report examines new developments, knowledge, and approaches to engineering at fractured rock sites since the publication of the 1996 National Research Council report Rock Fractures and Fluid Flow: Contemporary Understanding and Fluid Flow. Fundamental understanding of the physical nature of fractured rock has changed little since 1996, but many new characterization tools have been developed, and there is now greater appreciation for the importance of chemical and biological processes that can occur in the fractured rock environment. The findings of Characterization, Modeling, Monitoring, and Remediation of Fractured Rock can be applied to all types of engineered infrastructure, but especially to engineered repositories for buried or stored waste and to fractured rock sites that have been contaminated as a result of past disposal or other practices. The recommendations of this report are intended to help the practitioner, researcher, and decision maker take a more interdisciplinary approach to engineering in the fractured rock environment. This report describes how existing tools-some only recently developed-can be used to increase the accuracy and reliability of engineering design and management given the interacting forces of nature. With an interdisciplinary approach, it is possible to conceptualize and model the fractured rock environment with acceptable levels of uncertainty and reliability, and to design systems that maximize remediation and long-term performance. Better scientific understanding could inform regulations, policies, and implementation guidelines related to infrastructure development and operations. The recommendations for research and applications to enhance practice of this book make it a valuable resource for students and practitioners in this field.

Fluid Flow in Fractured Rocks

Fluid Flow in Fractured Rocks PDF Author: Robert W. Zimmerman
Publisher: John Wiley & Sons
ISBN: 1119248019
Category : Science
Languages : en
Pages : 293

Get Book Here

Book Description
FLUID FLOW IN FRACTURED ROCKS "The definitive treatise on the subject for many years to come" (Prof. Ruben Juanes, MIT) Authoritative textbook that provides a comprehensive and up-to-date introduction to fluid flow in fractured rocks Fluid Flow in Fractured Rocks provides an authoritative introduction to the topic of fluid flow through single rock fractures and fractured rock masses. This book is intended for readers with interests in hydrogeology, hydrology, water resources, structural geology, reservoir engineering, underground waste disposal, or other fields that involve the flow of fluids through fractured rock masses. Classical and established models and data are presented and carefully explained, and recent computational methodologies and results are also covered. Each chapter includes numerous graphs, schematic diagrams and field photographs, an extensive reference list, and a set of problems, thus providing a comprehensive learning experience that is both mathematically rigorous and accessible. Written by two internationally recognized leaders in the field, Fluid Flow in Fractured Rocks includes information on: Nucleation and growth of fractures in rock, with a multiscale characterization of their geometric traits Effect of normal and shear stresses on the transmissivity of a rock fracture and mathematics of fluid flow through a single rock fracture Solute transport in rocks, with quantitative descriptions of advection, molecular diffusion, and dispersion Fluid Flow in Fractured Rocks is an essential resource for researchers and postgraduate students who are interested in the field of fluid flow through fractured rocks. The text is also highly suitable for professionals working in civil, environmental, and petroleum engineering.

Conceptual Models of Flow and Transport in the Fractured Vadose Zone

Conceptual Models of Flow and Transport in the Fractured Vadose Zone PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309073022
Category : Science
Languages : en
Pages : 399

Get Book Here

Book Description
Fluid flow and solute transport within the vadose zone, the unsaturated zone between the land surface and the water table, can be the cause of expanded plumes arising from localized contaminant sources. An understanding of vadose zone processes is, therefore, an essential prerequisite for cost-effective contaminant remediation efforts. In addition, because such features are potential avenues for rapid transport of chemicals from contamination sources to the water table, the presence of fractures and other channel-like openings in the vadose zone poses a particularly significant problem, Conceptual Models of Flow and Transport in the Fractured Vadose Zone is based on the work of a panel established under the auspices of the U.S. National Committee for Rock Mechanics. It emphasizes the importance of conceptual models and goes on to review the conceptual model development, testing, and refinement processes. The book examines fluid flow and transport mechanisms, noting the difficulty of modeling solute transport, and identifies geochemical and environmental tracer data as important components of the modeling process. Finally, the book recommends several areas for continued research.

Advances in Multi-scale Multi-physics Geophysical Modelling and Fluid Transport in Unconventional Oil and Gas Reservoir

Advances in Multi-scale Multi-physics Geophysical Modelling and Fluid Transport in Unconventional Oil and Gas Reservoir PDF Author: Wenhui Song
Publisher: Frontiers Media SA
ISBN: 2889767752
Category : Science
Languages : en
Pages : 155

Get Book Here

Book Description