Author: Yoshio Sone
Publisher: Springer Science & Business Media
ISBN: 146120061X
Category : Science
Languages : en
Pages : 358
Book Description
This monograph is intended to provide a comprehensive description of the rela tion between kinetic theory and fluid dynamics for a time-independent behavior of a gas in a general domain. A gas in a steady (or time-independent) state in a general domain is considered, and its asymptotic behavior for small Knudsen numbers is studied on the basis of kinetic theory. Fluid-dynamic-type equations and their associated boundary conditions, together with their Knudsen-layer corrections, describing the asymptotic behavior of the gas for small Knudsen numbers are presented. In addition, various interesting physical phenomena derived from the asymptotic theory are explained. The background of the asymptotic studies is explained in Chapter 1, accord ing to which the fluid-dynamic-type equations that describe the behavior of a gas in the continuum limit are to be studied carefully. Their detailed studies depending on physical situations are treated in the following chapters. What is striking is that the classical gas dynamic system is incomplete to describe the behavior of a gas in the continuum limit (or in the limit that the mean free path of the gas molecules vanishes). Thanks to the asymptotic theory, problems for a slightly rarefied gas can be treated with the same ease as the corresponding classical fluid-dynamic problems. In a rarefied gas, a temperature field is di rectly related to a gas flow, and there are various interesting phenomena which cannot be found in a gas in the continuum limit.
Kinetic Theory and Fluid Dynamics
Author: Yoshio Sone
Publisher: Springer Science & Business Media
ISBN: 146120061X
Category : Science
Languages : en
Pages : 358
Book Description
This monograph is intended to provide a comprehensive description of the rela tion between kinetic theory and fluid dynamics for a time-independent behavior of a gas in a general domain. A gas in a steady (or time-independent) state in a general domain is considered, and its asymptotic behavior for small Knudsen numbers is studied on the basis of kinetic theory. Fluid-dynamic-type equations and their associated boundary conditions, together with their Knudsen-layer corrections, describing the asymptotic behavior of the gas for small Knudsen numbers are presented. In addition, various interesting physical phenomena derived from the asymptotic theory are explained. The background of the asymptotic studies is explained in Chapter 1, accord ing to which the fluid-dynamic-type equations that describe the behavior of a gas in the continuum limit are to be studied carefully. Their detailed studies depending on physical situations are treated in the following chapters. What is striking is that the classical gas dynamic system is incomplete to describe the behavior of a gas in the continuum limit (or in the limit that the mean free path of the gas molecules vanishes). Thanks to the asymptotic theory, problems for a slightly rarefied gas can be treated with the same ease as the corresponding classical fluid-dynamic problems. In a rarefied gas, a temperature field is di rectly related to a gas flow, and there are various interesting phenomena which cannot be found in a gas in the continuum limit.
Publisher: Springer Science & Business Media
ISBN: 146120061X
Category : Science
Languages : en
Pages : 358
Book Description
This monograph is intended to provide a comprehensive description of the rela tion between kinetic theory and fluid dynamics for a time-independent behavior of a gas in a general domain. A gas in a steady (or time-independent) state in a general domain is considered, and its asymptotic behavior for small Knudsen numbers is studied on the basis of kinetic theory. Fluid-dynamic-type equations and their associated boundary conditions, together with their Knudsen-layer corrections, describing the asymptotic behavior of the gas for small Knudsen numbers are presented. In addition, various interesting physical phenomena derived from the asymptotic theory are explained. The background of the asymptotic studies is explained in Chapter 1, accord ing to which the fluid-dynamic-type equations that describe the behavior of a gas in the continuum limit are to be studied carefully. Their detailed studies depending on physical situations are treated in the following chapters. What is striking is that the classical gas dynamic system is incomplete to describe the behavior of a gas in the continuum limit (or in the limit that the mean free path of the gas molecules vanishes). Thanks to the asymptotic theory, problems for a slightly rarefied gas can be treated with the same ease as the corresponding classical fluid-dynamic problems. In a rarefied gas, a temperature field is di rectly related to a gas flow, and there are various interesting phenomena which cannot be found in a gas in the continuum limit.
THE DYNAMICS AND THERMODYNAMICS OF COMPRESSIBLE FLUID FLOW
Author: ASCHER H. SHAPIRO
Publisher:
ISBN:
Category :
Languages : en
Pages : 558
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 558
Book Description
Fluid Dynamics
Author: Michel Rieutord
Publisher: Springer
ISBN: 3319093517
Category : Science
Languages : en
Pages : 508
Book Description
This book is dedicated to readers who want to learn fluid dynamics from the beginning. It assumes a basic level of mathematics knowledge that would correspond to that of most second-year undergraduate physics students and examines fluid dynamics from a physicist’s perspective. As such, the examples used primarily come from our environment on Earth and, where possible, from astrophysics. The text is arranged in a progressive and educational format, aimed at leading readers from the simplest basics to more complex matters like turbulence and magnetohydrodynamics. Exercises at the end of each chapter help readers to test their understanding of the subject (solutions are provided at the end of the book), and a special chapter is devoted to introducing selected aspects of mathematics that beginners may not be familiar with, so as to make the book self-contained.
Publisher: Springer
ISBN: 3319093517
Category : Science
Languages : en
Pages : 508
Book Description
This book is dedicated to readers who want to learn fluid dynamics from the beginning. It assumes a basic level of mathematics knowledge that would correspond to that of most second-year undergraduate physics students and examines fluid dynamics from a physicist’s perspective. As such, the examples used primarily come from our environment on Earth and, where possible, from astrophysics. The text is arranged in a progressive and educational format, aimed at leading readers from the simplest basics to more complex matters like turbulence and magnetohydrodynamics. Exercises at the end of each chapter help readers to test their understanding of the subject (solutions are provided at the end of the book), and a special chapter is devoted to introducing selected aspects of mathematics that beginners may not be familiar with, so as to make the book self-contained.
Compressible-fluid Dynamics
Author: Philip A. Thompson
Publisher: McGraw-Hill Companies
ISBN:
Category : Science
Languages : en
Pages : 696
Book Description
"This book introduces the fundamentals of compressible-fluid motion, or gasdynamics."--Preface.
Publisher: McGraw-Hill Companies
ISBN:
Category : Science
Languages : en
Pages : 696
Book Description
"This book introduces the fundamentals of compressible-fluid motion, or gasdynamics."--Preface.
Computational Gasdynamics
Author: Culbert B. Laney
Publisher: Cambridge University Press
ISBN: 1107393604
Category : Technology & Engineering
Languages : en
Pages : 631
Book Description
Numerical methods are indispensable tools in the analysis of complex fluid flows. This book focuses on computational techniques for high-speed gas flows, especially gas flows containing shocks and other steep gradients. The book decomposes complicated numerical methods into simple modular parts, showing how each part fits and how each method relates to or differs from others. The text begins with a review of gasdynamics and computational techniques. Next come basic principles of computational gasdynamics. The last two parts cover basic techniques and advanced techniques. Senior and graduate level students, especially in aerospace engineering, as well as researchers and practising engineers, will find a wealth of invaluable information on high-speed gas flows in this text.
Publisher: Cambridge University Press
ISBN: 1107393604
Category : Technology & Engineering
Languages : en
Pages : 631
Book Description
Numerical methods are indispensable tools in the analysis of complex fluid flows. This book focuses on computational techniques for high-speed gas flows, especially gas flows containing shocks and other steep gradients. The book decomposes complicated numerical methods into simple modular parts, showing how each part fits and how each method relates to or differs from others. The text begins with a review of gasdynamics and computational techniques. Next come basic principles of computational gasdynamics. The last two parts cover basic techniques and advanced techniques. Senior and graduate level students, especially in aerospace engineering, as well as researchers and practising engineers, will find a wealth of invaluable information on high-speed gas flows in this text.
Fluid Dynamics of Viscoelastic Liquids
Author: Daniel D. Joseph
Publisher: Springer Science & Business Media
ISBN: 1461244625
Category : Science
Languages : en
Pages : 772
Book Description
This book is about two special topics in rheological fluid mechanics: the elasticity of liquids and asymptotic theories of constitutive models. The major emphasis of the book is on the mathematical and physical consequences of the elasticity of liquids; seventeen of twenty chapters are devoted to this. Constitutive models which are instantaneously elastic can lead to some hyperbolicity in the dynamics of flow, waves of vorticity into rest (known as shear waves), to shock waves of vorticity or velocity, to steady flows of transonic type or to short wave instabilities which lead to ill-posed problems. Other kinds of models, with small Newtonian viscosities, give rise to perturbed instantaneous elasticity, associated with smoothing of discontinuities as in gas dynamics. There is no doubt that liquids will respond like elastic solids to impulses which are very rapid compared to the time it takes for the molecular order associated with short range forces in the liquid, to relax. After this, all liquids look viscous with signals propagating by diffusion rather than by waves. For small molecules this time of relaxation is estimated as lQ-13 to 10-10 seconds depending on the fluids. Waves associated with such liquids move with speeds of 1 QS cm/s, or even faster. For engineering applications the instantaneous elasticity of these fluids is of little interest; the practical dynamics is governed by diffusion, ·say, by the Navier-Stokes equations. On the other hand, there are other liquids which are known to have much longer times of relaxation.
Publisher: Springer Science & Business Media
ISBN: 1461244625
Category : Science
Languages : en
Pages : 772
Book Description
This book is about two special topics in rheological fluid mechanics: the elasticity of liquids and asymptotic theories of constitutive models. The major emphasis of the book is on the mathematical and physical consequences of the elasticity of liquids; seventeen of twenty chapters are devoted to this. Constitutive models which are instantaneously elastic can lead to some hyperbolicity in the dynamics of flow, waves of vorticity into rest (known as shear waves), to shock waves of vorticity or velocity, to steady flows of transonic type or to short wave instabilities which lead to ill-posed problems. Other kinds of models, with small Newtonian viscosities, give rise to perturbed instantaneous elasticity, associated with smoothing of discontinuities as in gas dynamics. There is no doubt that liquids will respond like elastic solids to impulses which are very rapid compared to the time it takes for the molecular order associated with short range forces in the liquid, to relax. After this, all liquids look viscous with signals propagating by diffusion rather than by waves. For small molecules this time of relaxation is estimated as lQ-13 to 10-10 seconds depending on the fluids. Waves associated with such liquids move with speeds of 1 QS cm/s, or even faster. For engineering applications the instantaneous elasticity of these fluids is of little interest; the practical dynamics is governed by diffusion, ·say, by the Navier-Stokes equations. On the other hand, there are other liquids which are known to have much longer times of relaxation.
Fluid- and Gasdynamics
Author: G.H. Schnerr
Publisher: Springer Science & Business Media
ISBN: 3709193109
Category : Science
Languages : en
Pages : 398
Book Description
This volume offers a wide range of theoretical, numerical and experimental research papers on fluid dynamics. The major fields of research - fundamentals of fluid mechanics as well as their applications - are treated: - stability phenomena: convective flow, thermal and hydrodynamic systems - transition, turbulence and separation: boundary-layer, turbulent combustion, rarefied gasdynamics, near wall and off wall flow fields, energy dissipation - transonic flow: homogeneous condensation, shock-waves, effects at Mach number unity - hypersonic flow: flow over spheres, aerothermodynamics, relaxation - fluid machinery: axial fans, compressor cascades, fluid couplings - computational fluid dynamics: passive shock control, zonal computation, cylinderflow, flow over wings - miscellaneous problems.
Publisher: Springer Science & Business Media
ISBN: 3709193109
Category : Science
Languages : en
Pages : 398
Book Description
This volume offers a wide range of theoretical, numerical and experimental research papers on fluid dynamics. The major fields of research - fundamentals of fluid mechanics as well as their applications - are treated: - stability phenomena: convective flow, thermal and hydrodynamic systems - transition, turbulence and separation: boundary-layer, turbulent combustion, rarefied gasdynamics, near wall and off wall flow fields, energy dissipation - transonic flow: homogeneous condensation, shock-waves, effects at Mach number unity - hypersonic flow: flow over spheres, aerothermodynamics, relaxation - fluid machinery: axial fans, compressor cascades, fluid couplings - computational fluid dynamics: passive shock control, zonal computation, cylinderflow, flow over wings - miscellaneous problems.
Gas Dynamics
Author: Abraham Achterberg
Publisher: Springer
ISBN: 9462391955
Category : Science
Languages : en
Pages : 391
Book Description
This book lays the foundations of gas- and fluid dynamics.The basic equations are developed from first principles, building on the (assumed) knowledge of Classical Mechanics. This leads to the discussion of the mathematical properties of flows, conservation laws, perturbation analysis, waves and shocks. Most of the discussion centers on ideal (frictionless) fluids and gases. Viscous flows are discussed when considering flows around obstacles and shocks. Many of the examples used to illustrate various processes come from astrophysics and geophysical phenomena.
Publisher: Springer
ISBN: 9462391955
Category : Science
Languages : en
Pages : 391
Book Description
This book lays the foundations of gas- and fluid dynamics.The basic equations are developed from first principles, building on the (assumed) knowledge of Classical Mechanics. This leads to the discussion of the mathematical properties of flows, conservation laws, perturbation analysis, waves and shocks. Most of the discussion centers on ideal (frictionless) fluids and gases. Viscous flows are discussed when considering flows around obstacles and shocks. Many of the examples used to illustrate various processes come from astrophysics and geophysical phenomena.
Elasticity and Fluid Dynamics: Volume 3 of Modern Classical Physics
Author: Kip S. Thorne
Publisher: Princeton University Press
ISBN: 069121557X
Category : Science
Languages : en
Pages : 480
Book Description
A groundbreaking textbook on twenty-first-century fluids and elastic solids and their applications Kip Thorne and Roger Blandford’s monumental Modern Classical Physics is now available in five stand-alone volumes that make ideal textbooks for individual graduate or advanced undergraduate courses on statistical physics; optics; elasticity and fluid dynamics; plasma physics; and relativity and cosmology. Each volume teaches the fundamental concepts, emphasizes modern, real-world applications, and gives students a physical and intuitive understanding of the subject. Elasticity and Fluid Dynamics provides an essential introduction to these subjects. Fluids and elastic solids are everywhere—from Earth’s crust and skyscrapers to ocean currents and airplanes. They are central to modern physics, astrophysics, the Earth sciences, biophysics, medicine, chemistry, engineering, and technology, and this centrality has intensified in recent years—so much so that a basic understanding of the behavior of elastic solids and fluids should be part of the repertoire of every physicist and engineer and almost every other natural scientist. While both elasticity and fluid dynamics involve continuum physics and use similar mathematical tools and modes of reasoning, each subject can be readily understood without the other, and the book allows them to be taught independently, with the first two chapters introducing and covering elasticity and the last six doing the same for fluid dynamics. The book also can serve as supplementary reading for many other courses, including in astrophysics, geophysics, and aerodynamics. Includes many exercise problems Features color figures, suggestions for further reading, extensive cross-references, and a detailed index Optional “Track 2” sections make this an ideal book for a one-quarter or one-semester course in elasticity, fluid dynamics, or continuum physics An online illustration package is available to professors The five volumes, which are available individually as paperbacks and ebooks, are Statistical Physics; Optics; Elasticity and Fluid Dynamics; Plasma Physics; and Relativity and Cosmology.
Publisher: Princeton University Press
ISBN: 069121557X
Category : Science
Languages : en
Pages : 480
Book Description
A groundbreaking textbook on twenty-first-century fluids and elastic solids and their applications Kip Thorne and Roger Blandford’s monumental Modern Classical Physics is now available in five stand-alone volumes that make ideal textbooks for individual graduate or advanced undergraduate courses on statistical physics; optics; elasticity and fluid dynamics; plasma physics; and relativity and cosmology. Each volume teaches the fundamental concepts, emphasizes modern, real-world applications, and gives students a physical and intuitive understanding of the subject. Elasticity and Fluid Dynamics provides an essential introduction to these subjects. Fluids and elastic solids are everywhere—from Earth’s crust and skyscrapers to ocean currents and airplanes. They are central to modern physics, astrophysics, the Earth sciences, biophysics, medicine, chemistry, engineering, and technology, and this centrality has intensified in recent years—so much so that a basic understanding of the behavior of elastic solids and fluids should be part of the repertoire of every physicist and engineer and almost every other natural scientist. While both elasticity and fluid dynamics involve continuum physics and use similar mathematical tools and modes of reasoning, each subject can be readily understood without the other, and the book allows them to be taught independently, with the first two chapters introducing and covering elasticity and the last six doing the same for fluid dynamics. The book also can serve as supplementary reading for many other courses, including in astrophysics, geophysics, and aerodynamics. Includes many exercise problems Features color figures, suggestions for further reading, extensive cross-references, and a detailed index Optional “Track 2” sections make this an ideal book for a one-quarter or one-semester course in elasticity, fluid dynamics, or continuum physics An online illustration package is available to professors The five volumes, which are available individually as paperbacks and ebooks, are Statistical Physics; Optics; Elasticity and Fluid Dynamics; Plasma Physics; and Relativity and Cosmology.
Fluid Dynamics for Physicists
Author: T. E. Faber
Publisher: Cambridge University Press
ISBN: 9780521429696
Category : Science
Languages : en
Pages : 470
Book Description
It is over three hundred and fifty years since Torricelli discovered the law obeyed by fountains, yet fluid dynamics remains an active and important branch of physics. This book provides an accessible and comprehensive account of the subject, emphasising throughout the fundamental physical principles, and stressing the connections with other branches of physics. Beginning with a gentle introduction, the book goes on to cover Bernouilli's theorem, compressible flow, potential flow, surface waves, viscosity, vorticity dynamics, thermal convection and instabilities, turbulence, non-Newtonian fluids and the propagation and attenuation of sound in gases. Undergraduate or graduate students in physics or engineering who are taking courses in fluid dynamics will find this book invaluable, but it will also be of great interest to anyone who wants to find out more about this fascinating subject.
Publisher: Cambridge University Press
ISBN: 9780521429696
Category : Science
Languages : en
Pages : 470
Book Description
It is over three hundred and fifty years since Torricelli discovered the law obeyed by fountains, yet fluid dynamics remains an active and important branch of physics. This book provides an accessible and comprehensive account of the subject, emphasising throughout the fundamental physical principles, and stressing the connections with other branches of physics. Beginning with a gentle introduction, the book goes on to cover Bernouilli's theorem, compressible flow, potential flow, surface waves, viscosity, vorticity dynamics, thermal convection and instabilities, turbulence, non-Newtonian fluids and the propagation and attenuation of sound in gases. Undergraduate or graduate students in physics or engineering who are taking courses in fluid dynamics will find this book invaluable, but it will also be of great interest to anyone who wants to find out more about this fascinating subject.