Author: Carlo E. D. Riboldi
Publisher:
ISBN: 9788893854481
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Flight Dynamics. Modeling Characterization and Performance
Author: Carlo E. D. Riboldi
Publisher:
ISBN: 9788893854481
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9788893854481
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Flight Dynamics. Modeling Characterization and Performance
Author: Carlo E.D. Riboldi
Publisher: Società Editrice Esculapio
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 705
Book Description
This text offers an analytic description of the dynamic behavior of an aircraft in flight. The explanation firstly covers in detail the build up and characterization of an analytic model for aircraft in flight. The proposed derivation process allows the reader to obtain an in-depth knowledge of the principles and assumptions employed in the obtainment of the equations describing the dynamic response of an aircraft, in parallel yielding suggestions on how to easily obtain models for other flying machines. Secondly, the model representing aircraft dynamics is populated, employing as much as possible additional simple models, linking basic aerodynamic and geometrical characteristics of an aircraft to the corresponding re- presentation in terms of coefficients. Finally, the dynamic performance of a typical aircraft is analyzed, making use of the notions on the dynamic behavior and on the typical values and balance of aircraft-specific coefficients. In this latter part, following an analysis of a equilibrium conditions, static and dynamic stability qualities are analyzed. An introduction to the conditioning of free dynamics through the design of a stability augmentation system is included as well. This book aims to support engineers as well as engineering students at the graduate level, of- fering a concise yet in-depth description of the dynamic behavior of a flying aircraft, trying to keep a rigorous approach to a greater extent than what is usual in the field. This should hopefully foster the comprehension of the key features in the model derivation process, and consequently the range of validity and applicability of the corresponding formulation. This focus on analytic modeling provides the reader with a key-asset when dealing with engineering problems, for example flight simulation, model identification and flight control design. Therefore, the present books attempts to mark a first relevant step in consolidating the notions required to face more specialized topics in aeronautical engineering.
Publisher: Società Editrice Esculapio
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 705
Book Description
This text offers an analytic description of the dynamic behavior of an aircraft in flight. The explanation firstly covers in detail the build up and characterization of an analytic model for aircraft in flight. The proposed derivation process allows the reader to obtain an in-depth knowledge of the principles and assumptions employed in the obtainment of the equations describing the dynamic response of an aircraft, in parallel yielding suggestions on how to easily obtain models for other flying machines. Secondly, the model representing aircraft dynamics is populated, employing as much as possible additional simple models, linking basic aerodynamic and geometrical characteristics of an aircraft to the corresponding re- presentation in terms of coefficients. Finally, the dynamic performance of a typical aircraft is analyzed, making use of the notions on the dynamic behavior and on the typical values and balance of aircraft-specific coefficients. In this latter part, following an analysis of a equilibrium conditions, static and dynamic stability qualities are analyzed. An introduction to the conditioning of free dynamics through the design of a stability augmentation system is included as well. This book aims to support engineers as well as engineering students at the graduate level, of- fering a concise yet in-depth description of the dynamic behavior of a flying aircraft, trying to keep a rigorous approach to a greater extent than what is usual in the field. This should hopefully foster the comprehension of the key features in the model derivation process, and consequently the range of validity and applicability of the corresponding formulation. This focus on analytic modeling provides the reader with a key-asset when dealing with engineering problems, for example flight simulation, model identification and flight control design. Therefore, the present books attempts to mark a first relevant step in consolidating the notions required to face more specialized topics in aeronautical engineering.
Flight Dynamics
Author: Robert F. Stengel
Publisher: Princeton University Press
ISBN: 0691237042
Category : Science
Languages : en
Pages : 914
Book Description
An updated and expanded new edition of an authoritative book on flight dynamics and control system design for all types of current and future fixed-wing aircraft Since it was first published, Flight Dynamics has offered a new approach to the science and mathematics of aircraft flight, unifying principles of aeronautics with contemporary systems analysis. Now updated and expanded, this authoritative book by award-winning aeronautics engineer Robert Stengel presents traditional material in the context of modern computational tools and multivariable methods. Special attention is devoted to models and techniques for analysis, simulation, evaluation of flying qualities, and robust control system design. Using common notation and not assuming a strong background in aeronautics, Flight Dynamics will engage a wide variety of readers, including aircraft designers, flight test engineers, researchers, instructors, and students. It introduces principles, derivations, and equations of flight dynamics as well as methods of flight control design with frequent reference to MATLAB functions and examples. Topics include aerodynamics, propulsion, structures, flying qualities, flight control, and the atmospheric and gravitational environment. The second edition of Flight Dynamics features up-to-date examples; a new chapter on control law design for digital fly-by-wire systems; new material on propulsion, aerodynamics of control surfaces, and aeroelastic control; many more illustrations; and text boxes that introduce general mathematical concepts. Features a fluid, progressive presentation that aids informal and self-directed study Provides a clear, consistent notation that supports understanding, from elementary to complicated concepts Offers a comprehensive blend of aerodynamics, dynamics, and control Presents a unified introduction of control system design, from basics to complex methods Includes links to online MATLAB software written by the author that supports the material covered in the book
Publisher: Princeton University Press
ISBN: 0691237042
Category : Science
Languages : en
Pages : 914
Book Description
An updated and expanded new edition of an authoritative book on flight dynamics and control system design for all types of current and future fixed-wing aircraft Since it was first published, Flight Dynamics has offered a new approach to the science and mathematics of aircraft flight, unifying principles of aeronautics with contemporary systems analysis. Now updated and expanded, this authoritative book by award-winning aeronautics engineer Robert Stengel presents traditional material in the context of modern computational tools and multivariable methods. Special attention is devoted to models and techniques for analysis, simulation, evaluation of flying qualities, and robust control system design. Using common notation and not assuming a strong background in aeronautics, Flight Dynamics will engage a wide variety of readers, including aircraft designers, flight test engineers, researchers, instructors, and students. It introduces principles, derivations, and equations of flight dynamics as well as methods of flight control design with frequent reference to MATLAB functions and examples. Topics include aerodynamics, propulsion, structures, flying qualities, flight control, and the atmospheric and gravitational environment. The second edition of Flight Dynamics features up-to-date examples; a new chapter on control law design for digital fly-by-wire systems; new material on propulsion, aerodynamics of control surfaces, and aeroelastic control; many more illustrations; and text boxes that introduce general mathematical concepts. Features a fluid, progressive presentation that aids informal and self-directed study Provides a clear, consistent notation that supports understanding, from elementary to complicated concepts Offers a comprehensive blend of aerodynamics, dynamics, and control Presents a unified introduction of control system design, from basics to complex methods Includes links to online MATLAB software written by the author that supports the material covered in the book
Performance Evaluation and Design of Flight Vehicle Control Systems
Author: Eric T. Falangas
Publisher: John Wiley & Sons
ISBN: 1119009766
Category : Technology & Engineering
Languages : en
Pages : 432
Book Description
The purpose of this book is to assist analysts, engineers, and students toward developing dynamic models, and analyzing the control of flight vehicles with various blended features comprising aircraft, launch vehicles, reentry vehicles, missiles and aircraft. Graphical methods for analysing vehicle performance Methods for trimming deflections of a vehicle that has multiple types of effectors Presents a parameters used for speedily evaluating the performance, stability, and controllability of a new flight vehicle concept along a trajectory or with fixed flight conditions
Publisher: John Wiley & Sons
ISBN: 1119009766
Category : Technology & Engineering
Languages : en
Pages : 432
Book Description
The purpose of this book is to assist analysts, engineers, and students toward developing dynamic models, and analyzing the control of flight vehicles with various blended features comprising aircraft, launch vehicles, reentry vehicles, missiles and aircraft. Graphical methods for analysing vehicle performance Methods for trimming deflections of a vehicle that has multiple types of effectors Presents a parameters used for speedily evaluating the performance, stability, and controllability of a new flight vehicle concept along a trajectory or with fixed flight conditions
Aircraft Dynamics
Author: Marcello R. Napolitano
Publisher: Wiley Global Education
ISBN: 1118213580
Category : Technology & Engineering
Languages : en
Pages : 722
Book Description
The 1st edition of Aircraft Dynamics: from Modeling to Simulation by Marcello R. Napolitano is an innovative textbook with specific features for assisting, motivating and engaging aeronautical/aerospace engineering students in the challenging task of understanding the basic principles of aircraft dynamics and the necessary skills for the modeling of the aerodynamic and thrust forces and moments. Additionally the textbook provides a detailed introduction to the development of simple but very effective simulation environments for today demanding students as well as professionals. The book contains an abundance of real life students sample problems and problems along with very useful Matlab codes.
Publisher: Wiley Global Education
ISBN: 1118213580
Category : Technology & Engineering
Languages : en
Pages : 722
Book Description
The 1st edition of Aircraft Dynamics: from Modeling to Simulation by Marcello R. Napolitano is an innovative textbook with specific features for assisting, motivating and engaging aeronautical/aerospace engineering students in the challenging task of understanding the basic principles of aircraft dynamics and the necessary skills for the modeling of the aerodynamic and thrust forces and moments. Additionally the textbook provides a detailed introduction to the development of simple but very effective simulation environments for today demanding students as well as professionals. The book contains an abundance of real life students sample problems and problems along with very useful Matlab codes.
Aircraft Control and Simulation
Author: Brian L. Stevens
Publisher: John Wiley & Sons
ISBN: 1118870972
Category : Technology & Engineering
Languages : en
Pages : 768
Book Description
Get a complete understanding of aircraft control and simulation Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems, Third Edition is a comprehensive guide to aircraft control and simulation. This updated text covers flight control systems, flight dynamics, aircraft modeling, and flight simulation from both classical design and modern perspectives, as well as two new chapters on the modeling, simulation, and adaptive control of unmanned aerial vehicles. With detailed examples, including relevant MATLAB calculations and FORTRAN codes, this approachable yet detailed reference also provides access to supplementary materials, including chapter problems and an instructor's solution manual. Aircraft control, as a subject area, combines an understanding of aerodynamics with knowledge of the physical systems of an aircraft. The ability to analyze the performance of an aircraft both in the real world and in computer-simulated flight is essential to maintaining proper control and function of the aircraft. Keeping up with the skills necessary to perform this analysis is critical for you to thrive in the aircraft control field. Explore a steadily progressing list of topics, including equations of motion and aerodynamics, classical controls, and more advanced control methods Consider detailed control design examples using computer numerical tools and simulation examples Understand control design methods as they are applied to aircraft nonlinear math models Access updated content about unmanned aircraft (UAVs) Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems, Third Edition is an essential reference for engineers and designers involved in the development of aircraft and aerospace systems and computer-based flight simulations, as well as upper-level undergraduate and graduate students studying mechanical and aerospace engineering.
Publisher: John Wiley & Sons
ISBN: 1118870972
Category : Technology & Engineering
Languages : en
Pages : 768
Book Description
Get a complete understanding of aircraft control and simulation Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems, Third Edition is a comprehensive guide to aircraft control and simulation. This updated text covers flight control systems, flight dynamics, aircraft modeling, and flight simulation from both classical design and modern perspectives, as well as two new chapters on the modeling, simulation, and adaptive control of unmanned aerial vehicles. With detailed examples, including relevant MATLAB calculations and FORTRAN codes, this approachable yet detailed reference also provides access to supplementary materials, including chapter problems and an instructor's solution manual. Aircraft control, as a subject area, combines an understanding of aerodynamics with knowledge of the physical systems of an aircraft. The ability to analyze the performance of an aircraft both in the real world and in computer-simulated flight is essential to maintaining proper control and function of the aircraft. Keeping up with the skills necessary to perform this analysis is critical for you to thrive in the aircraft control field. Explore a steadily progressing list of topics, including equations of motion and aerodynamics, classical controls, and more advanced control methods Consider detailed control design examples using computer numerical tools and simulation examples Understand control design methods as they are applied to aircraft nonlinear math models Access updated content about unmanned aircraft (UAVs) Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems, Third Edition is an essential reference for engineers and designers involved in the development of aircraft and aerospace systems and computer-based flight simulations, as well as upper-level undergraduate and graduate students studying mechanical and aerospace engineering.
Introduction to Aircraft Flight Mechanics
Author: Thomas R. Yechout
Publisher: AIAA
ISBN: 9781600860782
Category : Aerodynamics
Languages : en
Pages : 666
Book Description
Based on a 15-year successful approach to teaching aircraft flight mechanics at the US Air Force Academy, this text explains the concepts and derivations of equations for aircraft flight mechanics. It covers aircraft performance, static stability, aircraft dynamics stability and feedback control.
Publisher: AIAA
ISBN: 9781600860782
Category : Aerodynamics
Languages : en
Pages : 666
Book Description
Based on a 15-year successful approach to teaching aircraft flight mechanics at the US Air Force Academy, this text explains the concepts and derivations of equations for aircraft flight mechanics. It covers aircraft performance, static stability, aircraft dynamics stability and feedback control.
Aircraft Dynamics and Automatic Control
Author: Duane T. McRuer
Publisher: Princeton University Press
ISBN: 1400855985
Category : Technology & Engineering
Languages : en
Pages : 809
Book Description
Aeronautical engineers concerned with the analysis of aircraft dynamics and the synthesis of aircraft flight control systems will find an indispensable tool in this analytical treatment of the subject. Approaching these two fields with the conviction that an understanding of either one can illuminate the other, the authors have summarized selected, interconnected techniques that facilitate a high level of insight into the essence of complex systems problems. These techniques are suitable for establishing nominal system designs, for forecasting off-nominal problems, and for diagnosing the root causes of problems that almost inevitably occur in the design process. A complete and self-contained work, the text discusses the early history of aircraft dynamics and control, mathematical models of linear system elements, feedback system analysis, vehicle equations of motion, longitudinal and lateral dynamics, and elementary longitudinal and lateral feedback control. The discussion concludes with such topics as the system design process, inputs and system performance assessment, and multi-loop flight control systems. Originally published in 1974. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Publisher: Princeton University Press
ISBN: 1400855985
Category : Technology & Engineering
Languages : en
Pages : 809
Book Description
Aeronautical engineers concerned with the analysis of aircraft dynamics and the synthesis of aircraft flight control systems will find an indispensable tool in this analytical treatment of the subject. Approaching these two fields with the conviction that an understanding of either one can illuminate the other, the authors have summarized selected, interconnected techniques that facilitate a high level of insight into the essence of complex systems problems. These techniques are suitable for establishing nominal system designs, for forecasting off-nominal problems, and for diagnosing the root causes of problems that almost inevitably occur in the design process. A complete and self-contained work, the text discusses the early history of aircraft dynamics and control, mathematical models of linear system elements, feedback system analysis, vehicle equations of motion, longitudinal and lateral dynamics, and elementary longitudinal and lateral feedback control. The discussion concludes with such topics as the system design process, inputs and system performance assessment, and multi-loop flight control systems. Originally published in 1974. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Helicopter Flight Dynamics
Author: Gareth D. Padfield
Publisher: John Wiley & Sons
ISBN: 111940102X
Category : Technology & Engineering
Languages : en
Pages : 856
Book Description
The Book The behaviour of helicopters and tiltrotor aircraft is so complex that understanding the physical mechanisms at work in trim, stability and response, and thus the prediction of Flying Qualities, requires a framework of analytical and numerical modelling and simulation. Good Flying Qualities are vital for ensuring that mission performance is achievable with safety and, in the first and second editions of Helicopter Flight Dynamics, a comprehensive treatment of design criteria was presented, relating to both normal and degraded Flying Qualities. Fully embracing the consequences of Degraded Flying Qualities during the design phase will contribute positively to safety. In this third edition, two new Chapters are included. Chapter 9 takes the reader on a journey from the origins of the story of Flying Qualities, tracing key contributions to the developing maturity and to the current position. Chapter 10 provides a comprehensive treatment of the Flight Dynamics of tiltrotor aircraft; informed by research activities and the limited data on operational aircraft. Many of the unique behavioural characteristics of tiltrotors are revealed for the first time in this book. The accurate prediction and assessment of Flying Qualities draws on the modelling and simulation discipline on the one hand and testing practice on the other. Checking predictions in flight requires clearly defined mission tasks, derived from realistic performance requirements. High fidelity simulations also form the basis for the design of stability and control augmentation systems, essential for conferring Level 1 Flying Qualities. The integrated description of flight dynamic modelling, simulation and flying qualities of rotorcraft forms the subject of this book, which will be of interest to engineers practising and honing their skills in research laboratories, academia and manufacturing industries, test pilots and flight test engineers, and as a reference for graduate and postgraduate students in aerospace engineering.
Publisher: John Wiley & Sons
ISBN: 111940102X
Category : Technology & Engineering
Languages : en
Pages : 856
Book Description
The Book The behaviour of helicopters and tiltrotor aircraft is so complex that understanding the physical mechanisms at work in trim, stability and response, and thus the prediction of Flying Qualities, requires a framework of analytical and numerical modelling and simulation. Good Flying Qualities are vital for ensuring that mission performance is achievable with safety and, in the first and second editions of Helicopter Flight Dynamics, a comprehensive treatment of design criteria was presented, relating to both normal and degraded Flying Qualities. Fully embracing the consequences of Degraded Flying Qualities during the design phase will contribute positively to safety. In this third edition, two new Chapters are included. Chapter 9 takes the reader on a journey from the origins of the story of Flying Qualities, tracing key contributions to the developing maturity and to the current position. Chapter 10 provides a comprehensive treatment of the Flight Dynamics of tiltrotor aircraft; informed by research activities and the limited data on operational aircraft. Many of the unique behavioural characteristics of tiltrotors are revealed for the first time in this book. The accurate prediction and assessment of Flying Qualities draws on the modelling and simulation discipline on the one hand and testing practice on the other. Checking predictions in flight requires clearly defined mission tasks, derived from realistic performance requirements. High fidelity simulations also form the basis for the design of stability and control augmentation systems, essential for conferring Level 1 Flying Qualities. The integrated description of flight dynamic modelling, simulation and flying qualities of rotorcraft forms the subject of this book, which will be of interest to engineers practising and honing their skills in research laboratories, academia and manufacturing industries, test pilots and flight test engineers, and as a reference for graduate and postgraduate students in aerospace engineering.
Modeling and Simulation of Aerospace Vehicle Dynamics
Author: Peter H. Zipfel
Publisher: AIAA
ISBN: 9781563474569
Category : Computers
Languages : en
Pages : 586
Book Description
A textbook for an advanced undergraduate course in which Zipfel (aerospace engineering, U. of Florida) introduces the fundamentals of an approach to, or step in, design that has become a field in and of itself. The first part assumes an introductory course in dynamics, and the second some specialized knowledge in subsystem technologies. Practicing engineers in the aerospace industry, he suggests, should be able to cover the material without a tutor. Rather than include a disk, he has made supplementary material available on the Internet. Annotation copyrighted by Book News, Inc., Portland, OR
Publisher: AIAA
ISBN: 9781563474569
Category : Computers
Languages : en
Pages : 586
Book Description
A textbook for an advanced undergraduate course in which Zipfel (aerospace engineering, U. of Florida) introduces the fundamentals of an approach to, or step in, design that has become a field in and of itself. The first part assumes an introductory course in dynamics, and the second some specialized knowledge in subsystem technologies. Practicing engineers in the aerospace industry, he suggests, should be able to cover the material without a tutor. Rather than include a disk, he has made supplementary material available on the Internet. Annotation copyrighted by Book News, Inc., Portland, OR